1. Define the Purpose of Comments
Explain the why, not just the what: Comments should clarify why certain decisions were made, not just what the code is doing.
Avoid restating the obvious: Don't write comments that merely restate the code's functionality; instead, explain complex logic or unusual approaches.

2. Choose a Comment Style
Decide the type of comments to use based on your programming language:
Single-line comments: Use for brief, inline explanations.
In C, C++, Java, etc.: // Comment
In Python: # Comment
Block comments: Use for more detailed explanations.
In C, C++, Java: /* Comment */
In Python: """ Comment """

3. Guideline for Types of Comments
File Header Comments: Summarize the file’s purpose, the author, date, and version information.
Function/Method Comments: Include a brief description of the function, its inputs, outputs, and any side effects.
Inline Comments: Briefly explain tricky or non-obvious sections of code.
Section Comments: For large blocks or logical sections of code, use section comments to make navigation easier.

4. Formatting and Style Consistency
Language: Use clear, concise, and correct grammar.
Punctuation: Decide if comments should be complete sentences (recommended for clarity).
Capitalization: Consistently use capitalization at the beginning of comments.
Alignment: Maintain consistent indentation and alignment for readability.

5. Avoid Over-Commenting
Comments should add value. Avoid over-commenting or explaining trivial code like basic loops or variable assignments unless there is a need for clarification.

6. Update Comments
Ensure comments are updated when the code changes. Stale or incorrect comments can be misleading.

7. Special Comment Notations
TODO: Use to mark code that needs to be completed or revisited later.
Example: 
# TODO: Handle edge case where window_size > len(data)

FIXME: Highlight problematic or buggy areas of code.
Example: 
# FIXME: This doesn't handle negative numbers correctly

