Doxygen Commenters' Thread
1. Commenting Guidelines Summary
@brief: A brief summary of the function or class.
@param: Details of function parameters.
@return: Explanation of what the function returns.
@warning: Highlights any important warnings.
@note: Provides additional information or notes on usage.
@todo: Indicates future work or improvements needed.

2. Function Documentation
[image: 文本

描述已自动生成]
Explanation:
@brief: to provide a concise summary,
@param: tags for each parameter
@return: to describe the function's output.
@note: for additional information
@warning: to highlight a potential issue

3. Class Documentation
[image: 文本

描述已自动生成]
Explanation: 
@brief:  to provide an overview of the class’s purpose. 
@param, @return, @note, @warning: to provide critical usage information

4. Discussion Topics
a). For Complex Algorithms:
When documenting functions with complex logic, it is important to break down the algorithm step by step in the comments. 
(use @note to explain the approach and assumptions made)
b). Edge Cases and Performance Considerations:
Discuss when and how to document edge cases using @warning and @note tags.
(Include examples of how to indicate potential performance impacts)
c). Consistency Across the Project:
Maintaining a consistent style in comments is crucial for readability. Developers are encouraged to share their methods for ensuring uniformity across large codebases.

5. Best Practices
a). Keep Comments Concise:
Use @brief for short summaries and expand only when necessary.
b). Use Complete Sentences:
This improves readability and ensures clarity.
c). Avoid Over-Commenting:
Comments should provide value; avoid stating the obvious, such as commenting on simple variable assignments or loops unless they have specific importance.

6. Feedback and Collaboration
a). Interactive Comment Review Sessions:
Developers can participate in bi-weekly sessions to review and discuss code comments. These sessions focus on improving clarity, consistency, and coverage of the comments.
b). Suggestions and Improvements:
Developers are encouraged to propose new commenting methods, or to refine existing ones, by opening discussion threads or submitting code patches.
c). Contribution Guidelines:
Ensure all new code contributions adhere to the established Doxygen guidelines. Use the provided templates for consistency.
image1.png
W 000 ~NO UL & WN =

B R R R
BWNRS

15
16
17
18

v [¥%
* @rief Adds two integers and returns the result.
*
* This function takes two integer inputs and returns their sum.
*
* @param a The first integer to add.
* @aram b The second integer to add.
* @return The sum of the two integers.
*
* @note Ensure that the integers do not cause overflow.
* @warning This function is not thread-safe; synchronize if used in a multithreaded environment.
*/

v int add(int a, int b) {
return a + b;




image2.png
© 0N U DA WN R

B R RR R R R R R
©NOoOUAWNRS

19
20
21
22
23
24
23
26
27
28
29
30
31
32
ek}

v [¥%

* @rief A class representing a simple calculator.

*

* This class provides basic arithmetic operations such as addition,
* subtraction, multiplication, and division. It is designed for educational
* purposes and may not handle advanced mathematical functions.

*/

class Calculator {
v public:

v

iH

VESS

* @brief Multiplies two numbers.

*

* @param x The first number.

* @aram y The second number.

* @return The product of x and y.

*

* @note The function assumes x and y are non-zero.
*/

double multiply(double x, double y);

VESS

* @brief Divides one number by another.

*

* @param numerator The number to be divided.

* @param denominator The number to divide by.

* @return The quotient of numerator divided by denominator.

*

* @arning If denominator is zero, the function will return infinity.
* @note Consider checking for zero values before calling this function.
*/

double divide(double numerator, double denominator);




