Introduction

Jira is a project and issue management system that was made by atlassian, and is a globally
used system in software development and enterprise environments. It provides full support
for agile methodologies through its availability of built in scrum and kanban boards, reporting
tools and automation features and an extensive ecosystem of third party applications. Jira is
primarily delivered as a cloud based service and exposes rich REST APIs that enable
integration with other development tools as well as external systems.

On the other hand, Redmine is an open source issue and project tracking platform that is
built on Ruby on Rails. It supports multiple projects, configurable workflows, granular role
based access control, time tracking, gantt charts, calendars and built in wiki as well as a
forum feature. Redmine is usually deployed in a self-hosted environment and although
commercial, hosting options exist. It is distributed under the GNU GPLv2 license which
allows full access and maodification to its source code.

Shared Characteristics

Despite differences in its ideas and deployment, Jira and Redmine has many similar
fundamental capabilities:

e Both of the platforms provide robust issue tracking with customizable workflows,
statuses, fields as well as permission schemes.
They support management of several projects in one system
Both of them offer API access to enable integrations and automation, Jira provides a
lot of REST APIs and Redmine offers more JSON/XML-based endpoints.

e Notifications like emails and RSS feeds for redmine are also available so that the
users that are using the system are informed when there are changes.

e Both Redmine and Jira can be extended through plugins or add-ons either by the
Atlassian Marketplace or the Redmine plugin community.

Key Differences

Licensing and Cost Structure

Jira follows a proprietary licensing model. While a free tier is available for small teams, most
organizations must subscribe to paid plans that are priced per user and vary by feature set
and region.

Redmine is completely free to use for its licensing. However, organizations must factor in for
infrastructure, hosting, and maintenance costs, either by managing them internally or using
third party softwares.

Deployment Approach

Jira’s strategic focus is on cloud deployment. Atlassian has announced that the data center
offerings will be discontinued, with the full discontinuation set for 2029. Jira Cloud now
supports a huge amount of installations, and can house up to 100,000 users on one
instance.

Redmine is mainly built for self-hosting and runs across multiple operating systems and
database backends. Even though this encourages flexibility, it also makes a user
dependency when it comes to installation, upgrades, and system reliability on the adopting
organization.

Agile Functionality

Jira includes native Agile tooling, such as Scrum and Kanban boards, sprint planning, and
built-in reports like burndown and velocity charts.

Redmine provides timeline-oriented features such as Gantt charts and calendars by default,
but Agile boards and related analytics typically require additional plugins.

Automation and Query Capabilities

Jira distinguishes itself with its visual automation engine and Jira Query Language (JQL),
which allow users to define complex rules and perform advanced searches without external
tooling.

Redmine does not include equivalent built-in automation or query languages. Customization
in this area usually depends on plugins, scripting, or API-based solutions.

Integrations and Ecosystem

Jira offers tightly integrated support for popular development and collaboration tools such as
GitHub, GitLab, Bitbucket, and CI/CD platforms, supported by thousands of marketplace
applications.

Redmine includes basic source control integration out of the box and can be extended
through community plugins. However, plugin quality and maintenance vary, often requiring
additional administrative effort.

Security, Identity, and Compliance

Jira Cloud provides enterprise-grade identity management features, including SAML-based
single sign-on, SCIM provisioning, audit logging, and expanding data residency options.

With Redmine, security and compliance depend entirely on how the system is deployed and
managed. Features such as SSO, backups, and compliance controls must be implemented
and maintained by the hosting organization, often via external tools or plugins.

Selection Considerations

When Jira Is the Better Fit

Jira is well suited for organizations that require a managed cloud solution with minimal
operational overhead, strong Agile support, seamless integrations, and enterprise-level
governance features. It is particularly attractive to teams that prioritize rapid onboarding,
standardized workflows, and vendor-supported scalability.

When Redmine Is the Better Fit

Redmine is an appropriate choice for teams that value full control over their infrastructure,
require on-premise deployment, or operate under strict budget constraints. It is especially
suitable for organizations with sufficient technical expertise to manage servers, customize
features at the source-code level, and maintain the platform independently.

Total Cost of Ownership (TCO)

Jira’s cost model is based on recurring subscription fees, which provide predictable
expenses and include hosting, maintenance, and automatic updates. Additional costs may
arise from premium marketplace applications.

Redmine eliminates licensing fees but shifts costs toward infrastructure, system
administration, upgrades, and potential commercial plugins or managed hosting services. As
a result, its total cost of ownership varies significantly depending on internal capabilities and
deployment choices.

Creating Epics and Tasks in Jira

Planning in Jira uses a timeline, which is done through Epics and Tasks. Epic and Tasks are
like the Issues in Redmine. However, there is a parent-child relationship that helps to group
the Tasks together in one Epic. The Epics and Tasks can then be viewed within the timeline
which looks like a Gantt chart. This feature is also like Redmine. It is worth noting that for the
free version of Jira, a non-direct child of Epics (child of Tasks, Tasks not linked to an Epic,
etc.) will not be shown within the timeline, but will be shown on the Jira Boards section.

To create an Epic and Task, first the user needs to navigate to the project board, click
“Create” and choose “Epic” as the issue type. For Tasks, the user should click “Tasks” as
issue type. To link Tasks to an Epic, while creating Tasks the user needs to select an Epic in
the “Epic Link” field

Spaces / @ Redmine / 47 DEV-6 / (4] DEV-7

Commenting Newv 4
+ ©

v Details
Description
Commenting the code following Doxygen format . 2 Unassigned

Assignee

Assign to me

Subtasks .

Priority Medium
Add subtask

Parent 4> DEV-6 Doxygen

Linked work items

Due date B 27 Dec 2025
Add linked work item

Labels None
Activity

All Comments History Work log Team None

Start date 18 Dec 2025
Add a comment...

3 Create branch

Looks good! ¥ Need help? @ This is blocked... ®_Can you clarify...? § Developme
ot 4 Create commit

Pro tip: press 0 comment
Reporter & MUHAMMAD Fai..

v Automation

Comparison: Jira vs Redmine

When comparing Jira and Redmine for project management, both tools support hierarchical
task organization but with different approaches and philosophies. Jira is highly specialized
for Agile methodologies, offering native support for Scrum and Kanban workflows with
dedicated Epic, Story, and Task issue types that align with Agile terminology. Its interface is
polished and feature-rich, with advanced reporting through dashboards, burndown charts,
and velocity tracking. However, Jira can feel complex for smaller teams and typically
requires paid licensing for meaningful features. Redmine, conversely, takes a more
generalized approach to project management, using a simpler Parent-Child relationship
model where any issue can be a parent to another, regardless of type. It's open-source and
free, making it accessible for budget-conscious teams, and offers straightforward issue
tracking with customizable workflows, Gantt charts, and time tracking built-in. While
Redmine's interface feels more utilitarian and less modern than Jira's, it provides excellent
flexibility through plugins and doesn't lock teams into Agile-specific frameworks. Ultimately,
Jira excels for Agile teams needing sophisticated sprint management and reporting, while
Redmine suits teams wanting a free, flexible, and straightforward project tracking system
without methodology constraints.

Gantt Chart Timeline Views in Jira and Redmine

Jira's Timeline/Gantt Chart Approach

In Jira, Gantt chart functionality is not available in the basic version and requires additional
solutions. For Jira Cloud, you can use the built-in Timeline view (formerly called Advanced
Roadmaps in premium plans), which provides a visual roadmap showing Epics, Stories, and
Tasks across a time-based horizontal layout. To access it, navigate to your project sidebar
and select "Timeline" or create a plan in Jira Premium/Enterprise editions. The Timeline
displays issues as horizontal bars spanning their start and end dates, with dependencies
shown as connecting lines between items. Epics appear as parent bars with their child Tasks
nested beneath or linked visually. You can drag bars to adjust dates, create dependencies by
connecting issues, and adjust timelines dynamically. The view color-codes issues by status
and allows filtering by assignee, label, or component. However, for more traditional Gantt
chart features like critical path analysis or resource leveling, many teams install third-party
apps from the Atlassian Marketplace such as BigPicture, ActivityTimeline, or Tempo
Planner, which provide comprehensive Gantt functionality with baseline tracking, progress
percentages, and resource management overlays.

Redmine's Native Gantt Chart

Redmine includes a native Gantt chart out of the box, accessible directly from the project
menu by clicking "Gantt" in the left sidebar. This displays all project issues as horizontal bars
on a timeline, automatically calculating the span based on start dates, due dates, and
estimated hours. Parent issues (Epics) appear as summary bars that encompass all their
child tasks, creating a clear hierarchical visualization. The Gantt chart shows task
dependencies with arrows connecting related issues, displays completion percentage as
filled portions within each bar, and color-codes issues by priority or tracker type. You can
zoom the timeline view from days to months to years, and export the chart as a PNG image
for sharing. Redmine's Gantt chart automatically reflects the parent-child relationships you've
established, so when you set an issue's "Parent task" field, it nests visually beneath that
parent in the timeline. The chart updates in real-time as you modify issue dates, progress
percentages, or relationships, making it straightforward for traditional waterfall or hybrid
project management approaches.

Key Differences in Timeline Display

The primary distinction is that Redmine provides Gantt charts as a core feature requiring
no additional plugins or premium tiers, making it immediately accessible for teams needing
classic project scheduling views. Jira requires either a premium subscription for Timeline
views or third-party apps for full Gantt capabilities, but offers more sophisticated roadmap
planning and Agile-oriented visualizations when properly configured. Redmine's Gantt chart
tends to be more technical and utilitarian, ideal for detailed project scheduling, while Jira's
Timeline emphasizes strategic planning and release coordination with a modern, interactive
interface.

Q Search timeline

Work
> DEV-6 Doxygen

DEV-7 Commenting

DEV-8 Generate Documentation (B

—+ Create Epic

Pages in Jira are used for project documentation. Pages can be used to store information
such as team member information, project requirements, meeting notes, and more. While
similar to Wiki in Redmine, the most significant difference is the use of templates in Jira. The
user is able to select the templates given by the website or select from the
community-created templates. Examples of templates include templates for home pages,
about the team members section, and project requirements page templates. It is worth
noting that Pages uses Confluence, which is a different tool from Jira, as Confluence which
stores pages. Even though it is a different tool, it has a seamless integration with Jira as they
are both from Atlassian.

Redmine Home &

Welcome to your new spacel!

Spaces help your team structure, organize, and share work, so every team member has visibility
into institutional knowledge and access to the information they need to do their best work.

Get started with the basics
Start editing this content:

Click the pencil icon %, or e on your keyboard to edit and start typing. You can edit anywhere. 5]
Hit / to see all the types of content you can add to your page. Try /image or /table ®
Use the toolbar at the top to play around with font, colors, f°"“a“ing, and more

Click close to save your draft or publish when your page is ready to be shared

~ Team metrics About <Team Name> % Our blog
ONTRACK / (OFF TRACK metrics, and get the latest updates.
Key metric #2
Updated 25 Dec 2025 i &3 Meet the team &
ON TRACK | OFF TRACK Add team members to the table below by typing /user
profile or /profile picture.
Key metric #3 Type /profile picture to Type /profile picture to
display their avatar. display their avatar.
Updated 25 Dec 2025
@ team member @ team member
ONTRACK | OFF TRACK Title Title
Type /profile picture to Type /profile picture to
display their avatar. display their avatar.
@ team member @ team member
Title Title
@

Published just now e (£ Edit & Share

ProductRequirements

O ByMUHAMMAD FaiagHaikal BinMHaika l(is0808sv) |~ Seeviews (& Add a reaction

Product overview
“= Target date
Document status DRAFT
¥~ Team members
Quick links
“* Designs
%5 Loom demo

) Work tracker

@) Objective

Steps to Connect Jira and GitHub

1. Open a Jiralssue

Firstly, navigate to a task in Jira. This is where the development progress will be
tracked. In the tasks’s Details panel, locate the Development section.

2

g o6 uw

a8

g e v

a

2.

3.

4.

Initiate the GitHub Integration
Under the Development section, select Create branch or Connect GitHub. Jira will
prompt you to connect a source code management tool.

‘ kan-251

$ git commit -m “Kan-1 Update”

Connect your code to Jira

Minimise context switching and gain visibility of your
team’s pull requests and development workflow.

O Connect GitHub L7 J Connect GitLab Connect Bitbucket

Exp her integrations

Select GitHub as the Repository Provider

From the available integrations, choose GitHub. You will be redirected to the
Atlassian Marketplace to install the GitHub for Atlassian application if it is not
already installed.

Review and Install

b for Atlassian

ian

27/4 % k * (504) | &144414 ¥ CLOUD FORTIFIED

Permissions

Actions

Data management

Data storage, sharing, receiving, and processing

Install GitHub for Atlassian

Click Get it now, review the requested permissions, and proceed with the
installation. Select the appropriate Atlassian site (Jira workspace) where the
integration should be enabled.

Install Atla

Install on your personal account M HAIKAL Muhammad Faiq
Haikal

for these repositories:

All
-

Only select repositories

with these permissions:

Read access to Dependabot alerts, actions, administration,
metadata, secret scanning alerts, and security events

Read and write access to code, deployments, issues, and pull
requests

Install

5. Authorize GitHub Access
Log in to your GitHub account when prompted. Choose whether to grant access to
all repositories or only selected repositories, depending on project requirements.
Confirm the requested read and write permissions.

6. Complete the Installation
Finalize the setup by reviewing the configuration and confirming the installation.
Once completed, Jira and GitHub will be linked at the workspace level.

7. Create a Branch from Jira
Return to the Jira issue and select Create branch. Choose the repository and base
branch (e.g., main or develop). Jira will automatically generate a branch name that
includes the issue key (e.g., DEV-7-commenting).

v Details

Due date B 27 Dec 2025

Labels None
Team None

Start date 18 Dec 2025

CJ) Open with VS Code
Development !9 Create branch

¢ Create commit

Reporter MUHAMMAD Faiq..

> Automation <4 Rule executions

Created 1 hour ago £63 Configure
Updated 1 hour ago

o0

Create GitHub Branch

Creating a branch for DEV-7

Repository

Select a repository v

Can't find the repository you're looking for?

Branch from

Select a branch v

Branch name

DEV-7-Commenting

Create branch

@ Summary @3 List (D Board </> Code & Forms 2 Timeline [Pages </> Development -

Key metrics (BETA]

Work items @ Pull request cycle time @ Lead time for changes @ Deployment frequency @
0 0 0 (]

Completed this week Rolling 7-day median Rolling 12-week average Weekly average

Work items @ Work items @ Bugs @ Pull requests Vulnerabilities
0 0 0 0 0

Overdue Reopened Open Open Critical
Related work Pull requests Repositories Vulnerabilities Deployments Work suggestions v

Repositories Last updated

rihts-4/Jir 2 4 5
p— 2 minutes ago
itHul

)) How was your experience with the Development page? Give us feedback

8. Link Commits and Pull Requests
When committing code, include the Jira issue key in the commit message (e.g., git
commit -m "DEV-7 Add commenting feature"). Jira will automatically detect and
display commits, branches, and pull requests under the issue’s Development section.
This part is important as the issue key helps Jira trace GitHub commiits.

Team None

Start date 18 Dec 2025

CJ Open with VS Code

Development !J Create branch

¢ Create commit

Link commits to Jira work items

Include keys in your commit messages to link them
to your Jira work items. Learn more (7

Copy key

DEV-7

Copy sample Git commit

git commit -m "DEV-7 Commenting"

Outcome

By completing these steps, Jira issues become directly linked to GitHub branches, commits,
and pull requests. This integration improves traceability between project requirements and
implementation, reduces context switching for developers, and provides real-time visibility
into development progress directly from Jira.

	Introduction
	Shared Characteristics
	Key Differences
	Licensing and Cost Structure
	Agile Functionality
	Automation and Query Capabilities
	Integrations and Ecosystem
	Security, Identity, and Compliance

	Selection Considerations
	When Jira Is the Better Fit
	When Redmine Is the Better Fit

	Total Cost of Ownership (TCO)
	Creating Epics and Tasks in Jira
	Comparison: Jira vs Redmine

	
	
	Gantt Chart Timeline Views in Jira and Redmine
	Jira's Timeline/Gantt Chart Approach
	Redmine's Native Gantt Chart
	Key Differences in Timeline Display

	Steps to Connect Jira and GitHub
	Outcome

