JIRA Research Report

Feasibility Study and Implementation Guide
Project G22-2025FP (TZQI)

Jira Research Team

January 5, 2026

Abstract

This report is a feasibility study on using Jira Software for project management. Our
team (G22-2025FP) has been using Redmine, but to test Jira we have two members assigned
in a Jira research group to test Jira and see if it is better than Redmine.

We migrated some of our project data from Redmine into Jira and tried out the main
features like Timeline views, Backlog management, Sprint planning, the board, and the
built-in Pages for documentation. The Jira Research Team (Ghosh Deb Kumar and Shrestha
Anjal) did this study separately from the main project work.

This guide walks through how we set everything up, with screenshots from our actual
TZQI(code of our project which randomly give by Jira) project board. By the end, we
found that Jira does have some real advantages over Redmine, especially when it comes to
visualizing timelines, keeping documentation in one place, and working in sprints.

JIRA Research Report

Project G22-2025FP (TZQI)

Project Team Members

Name ‘ Role(s)
FUJITA Ryusei Project Manager (PM)
DAKE Parth Project Leader (PL), UML

JONATHAN Setiawan
NICHOLAS Gallen Efendi
YAMAMOTO Yuto
STOLBOVOY Dennis Victor
NAKAMURA Yukiya
YAMANE Leon

KIM Byeolha

ANANNA Taslima Hossain
GHOSH Deb Kumar
SHRESTHA Anjal

Technical Developer

Technical Developer

Technical Developer

Wiki Lead, Technical Developer

Wiki Editor

Wiki Editor

Documentation Lead (Doxygen)
Documentation Contributor (Doxygen)
Jira Research Team

Jira Research Team

Contents
Project Team Members

1 Introduction
1.1 Project Overview
1.2
1.3
1.4

Jira Advantages

2 Jira
2.1

2.1.1 What is it?

Current System Limitations (Redmine)

Research Scope and Team

Screens and Concepts Explained
The Timeline Screen (Roadmap)

2.1.2 What appears on this screen? oL

2.1.3 Why is this better than Redmine?
2.1.4 Critical Feature for G22-2025FP

The Planning Engine: Backlog and Sprint Management
Concept: Backlog vs. Sprint (Storage vs. Focus)
The Interface: How the Screen Looks

2.2
221
2.2.2
223
224
2.2.5

2.3

2.3.1 What is it?

Workflow Summary
The Active Board Screen (Execution Area)

2.3.2 What appears on this screen? Lo

2.3.3 Why is this better than Redmine?

2.4 Additional Views

24.1

The List View (Excel-Style)
2.4.2 The Pages View (Documentation/Wiki)
2.4.3 Why is this better than Redmine Wiki?

3 Step-by-Step Implementation Guide

3.1 Phase 1: Environment Initialization

JIRA Research Report Project G22-2025FP (TZQI)

3.1.1 Step 1: Create the Project Space 16
3.1.2 Step 2: Team Onboarding (User Management) 17

3.2 Phase 2: Populating the Backlog (The Migration) 18
3.2.1 Step 1: Locate the Creation Tool 18
3.2.2 Step 2: Creating the First Issue - The Epic 18
3.2.3 Step 3: Creating Main Tasks, 20
3.2.4 Step 4: Creating Sub-tasks (Wiki Pages) 22

3.3 Phase 3: The Planning Ceremony (Sprint Creation) 24
3.3.1 Whatisa Sprint?. 24
3.3.2 Step 1: Create the Sprint Container 24
3.3.3 Step 2: Drag and Drop Planning 24
3.3.4 Step 3: Start the Sprint (Setting Dates) 25

3.4 Phase 4: Daily Execution (Using the Board) 27
3.4.1 Step 1: Moving a Task to “In Progress” 27

3.4.2 Step 2: Team Collaboration (Comments) 27
3.4.3 Step 3: Completing Work (Moving to Done) 28

3.5 Phase 5: Creating Pages (The Wiki) 30
3.5.1 Step 1: Creating Main Pages (Wiki Pages) 30
3.5.2 Step 2: Creating Sub-Pages (Wiki Pages) 30
3.5.3 Step 3: Editing Pages (Wiki Pages) 31

4 Summary of Migration Phases 32
4.1 Phase 1: Environment Initialization 32
4.2 Phase 2: Populating the Backlog 32
4.3 Phase 3: Sprint Planning oL 32
4.4 Phase 4: Daily Execution oo 32
4.5 Phase 5: Creating Documentation 32
5 Conclusion 33

JIRA Research Report Project G22-2025FP (TZQI)

List of Figures

1
2
3

10

11

12

13

14
15

16
17
18
19
20
21
22
23
24
25

26
27

Timeline view showing Epic and task bars across the project schedule 7
Calendar axis with zoom controls for different time-scale views 8
Backlog screen showing the Sprint section (top, active) and Backlog section (bot-

tom, future work) 9

Issue rows in the Backlog showing keys, types, assignees, status, and story points 10
Board view showing TO DO, IN PROGRESS, and DONE columns for visual task

management L L Lo 12
List view showing all issues in spreadsheet format with sortable columns and
filtering options L. 14
Pages view showing hierarchical page tree in the left sidebar 15
Pages content area with rich text editor, formatting options, and collaboration
features 15

Jira Spaces dashboard showing “Create space” button and Scrum template selection 16
Access settings page showing team members with “Add people” button and Ad-

ministrator roles 17
Create Issue modal dialog showing fields for Space, Work type, Status, Summary,
and Description L 18
Create Issue dialog with Work type dropdown expanded showing Epic, Task,
Story, Bug, Sub-task options 19
Left: Epic form with Summary field filled. Right: Description and date fields
after scrolling down L 19
Backlog view showing Epic “G22-2025-Final Project” with purple Epic icon . . . 20
Task creation dialog showing fields for Summary, Assignee, Story Points, and Epic
Link . . . o 21
Backlog populated with all 6 main tasks and Epic linked together 21
Clicking on a task to open it and view “Create sub-task” option 22
Creating sub-task with Summary, Parent link, Assignee, and Story Points fields . 23
Backlog screen with “Create Sprint” button visible in top-right corner 24
Sprint 1 filled with all 12 items (Epic + Tasks + Sub-tasks) showing 30 Story
Points total. Backlog section below shows 2 bugs and one task for later 25
Left: Sprint filling with items being dragged. Right: “Start Sprint” dialog with
duration set to “2 weeks” and dates visibleo 26
Board showing TZQI-2 in the IN PROGRESS column, other items in TO DO,
and DONE empty 27
Task detail panel showing Comments section with conversation between team
members using @mentions Lo 28
Board showing TZQI-2 moved to DONE column (green), progress bar updated
to “1 of 12 items completed” L 29
Left: Pages button and “Create a Page” interface. Right: Selecting Blank Page
template 30
Page tree with “+” mark showing “Create a child page” option visible 31
Pages editor with Edit button and formatting toolbar with font size, links, emoji,
and picture options L 31

JIRA Research Report Project G22-2025FP (TZQI)

1 Introduction

1.1 Project Overview

This report looks at whether Jira Software could be a good fit for managing our G22-2025FP
project. Right now we use Redmine, which works fine for basic issue tracking, but honestly it
gets messy when things start piling up. Everything shows up as one big list, and it is hard to
tell what is urgent versus what can wait. We wanted to see if Jira’s features would help us stay
more organized, especially since our project covers a lot of different areas like UML diagrams,
developer setup, wiki pages, and code documentation.

Our project runs from December 11-25, 2025 (basically a 2-week sprint). During this time we
need to get through creating UML diagrams, setting up the developer environment, configuring
workflows, building out wiki pages, setting up Doxygen for code docs, and then going back to
revise the UML stuff.

1.2 Current System Limitations (Redmine)

The main issue with Redmine is that everything sits in one long list. Urgent bugs, future ideas,
tasks in progress they all look the same. You cannot quickly see what someone is working on or
if a task is stuck waiting for something else. The Gantt chart exists but you have to manually
type in all the dates, and it does not really update on its own.

1.3 Jira Advantages

Jira, by contrast, offers specialized views:

Backlog for planning future work

Board for daily execution with drag-and-drop

Timeline for visual roadmap with automatic bars

e Pages for integrated documentation

Reports for burndown charts and velocity tracking

1.4 Research Scope and Team

The two of us (Ghosh Deb Kumar and Shrestha Anjal) took on this research task. We basically
moved everything from our Redmine database into Jira to see how it handles real project data.
Here is what we migrated:

e One Epic: G22-2025-Final Project (TZQI-13)
e Six Main Tasks:
— TZQI-2: Feature #1489: UML
— TZQI-3: Feature #1491: Developer
TZQI-4: Feature #1494: Jira
TZQI-5: Feature #1496: Wiki
— TZQI-6: Feature #1495: Doxygen
— TZQI-7: Support #1515: UML revise
e Five Sub-tasks under Wiki (TZQI-8 through TZQI-12):

JIRA Research Report Project G22-2025FP (TZQI)

Project Details

— Group Members
— UML Diagrams
Code

Results

We tested out all the main screens and features to see how Jira handles this kind of workload.
We assigned all 13 items to ourselves, set dates between December 11, 2025 and January 5, 2026,
and linked everything to the main Epic so we could track it all together.

The report starts with a section explaining what each Jira screen does and why it matters. After
that, we go through the actual steps we took to set everything up, with screenshots from our
real project board.

JIRA Research Report Project G22-2025FP (TZQI)

2 Jira Screens and Concepts Explained

Before jumping into the practical steps, let us go over what each Jira screen actually does. This
section breaks down the main views you will use and explains them in plain terms.

2.1 The Timeline Screen (Roadmap)
2.1.1 What is it?

The Timeline (sometimes called Roadmap) is basically a Gantt chart. Instead of reading dates
as plain text, you actually see bars stretching across a calendar. It makes it way easier to
understand when things are happening.

2.1.2 What appears on this screen?

Figure 1: Timeline view showing Epic and task bars across the project schedule

EPIC BAR (long one): Our Epic TZQI-13 “G22-2025-Final Project” shows up as a long
purple bar going from December 11-25, 2025. You can see the whole project duration right
away.

TASK BARS (short ones under the long epic): Each task (TZQI-2 through TZQI-7) gets
its own bar. Where the bar sits on the calendar shows the start and due dates, and how long
the bar is shows the duration. For example, TZQI-2 (UML) appears as a bar from Dec 11-15,
so you know it is a 5-day task.

JIRA Research Report Project G22-2025FP (TZQI)

Figure 2: Calendar axis with zoom controls for different time-scale views

CALENDAR AXIS: Horizontal timeline showing dates, with zoom capability: day view, week
view, month view, and today marker showing current date.

2.1.3 Why is this better than Redmine?

In Redmine, you just see text like “Due Date: 2025-12-15". In Jira, you actually see the bar
ending on Dec 15. At a glance you can tell:

e Which tasks are running at the same time
e Which tasks come one after another
e Whether we will finish on time

o If there are any gaps where nothing is scheduled

2.1.4 Critical Feature for G22-2025FP

All 6 main tasks show up as bars on the timeline. The 5 sub-tasks under Wiki (TZQI-8 to
TZQI-12) can be expanded to show their own bars within the Wiki task timeframe.

IMPORTANT: Timeline bars only show up if you set BOTH the start date AND the due
date. When we first migrated our data, we saw tasks listed on the left side but no bars on the
chart. Took us a while to figure out we had to go back and add dates to every task. That was
a lesson learned.

JIRA Research Report Project G22-2025FP (TZQI)

2.2 The Planning Engine: Backlog and Sprint Management

This is basically the control center of your project. Here is where you organize all your work
and decide what to do now versus what to save for later.

2.2.1 Concept: Backlog vs. Sprint (Storage vs. Focus)

One of the biggest differences between Redmine and Jira is how they handle task lists. In
Redmine, everything urgent bugs, future ideas, current work all sits in one giant list. Jira splits
things into two buckets:

The Backlog (Storage): This is your master list with everything in the project. Tasks here
are not active yet. It is just a place to keep track of ideas so you do not forget them.

The Sprint (Focus): This is your action list for a fixed period (usually 2 weeks for us). Tasks
here are what you are actually working on right now. The idea is to keep the team focused on
a small set of tasks instead of being overwhelmed by 50 things at once.

Why split things up? If you only had a Backlog (like Redmine), looking at a huge list gets
overwhelming. If you only had a Sprint, you would lose track of future ideas. You need both:
store all your ideas in the Backlog, pick the top priorities, and move them into the Sprint.

2.2.2 The Interface: How the Screen Looks

The Backlog screen is split into two parts.

Figure 3: Backlog screen showing the Sprint section (top, active) and Backlog section (bottom,
future work)

SPRINT SECTION (Top): This is your “focus” zone. You will see a box labeled “TZQI
Sprint 1”7 at the top containing whatever you have committed to for the current cycle. For our
project, this shows the 6 main tasks plus 5 sub-tasks. It also displays the sprint dates (December
11-25, 2025) and total story points.

BACKLOG SECTION (Bottom): This is your “storage” zone. Shows a list of future work
that is not part of the current sprint. For us, this had 3 items including a couple of bugs
(TZQI-15 and TZQI-16) that we are saving for later.

JIRA Research Report Project G22-2025FP (TZQI)

Figure 4: Issue rows in the Backlog showing keys, types, assignees, status, and story points

ISSUE DETAILS (Row View): Each row displays:
e Issue Key: Unique IDs like TZQI-2, TZQI-3
e Icon: Visual indicators for task types (Story, Bug, Sub-task)
e Summary: The task title (e.g., “Feature #1489: UML)

Assignee: An avatar icon showing who is responsible

Status: Current state of the issue

Story Points: A number estimating complexity

e Epic Link: A label showing which module this belongs to

2.2.3 Comparison: Why is this better than Redmine?

Redmine just shows one big list with everything mixed together. Hard to tell what is urgent
versus what is planned for next month.

In Jira:

e Separation: Sprint items are at the TOP (stuff you are doing now), Backlog items are
at the BOTTOM (stuff for later)

e Capacity Planning: Jira automatically adds up all the Story Points in your sprint (ours
showed 30 points). If you are taking on too much, you will see it right away. Redmine
does not do this at all

e Flexibility: Just drag and drop to move items between sections

2.2.4 Critical Feature for G22-2025FP (Sub-tasks)

A specific advantage found for our project is the visual hierarchy. The sub-tasks (TZQI-8 to
TZQI-12) appear indented directly under their parent task TZQI-5 (Wiki). Jira allows you to
collapse or expand this parent task. This keeps the view clean while still maintaining the full
breakdown structure, solving the clutter issue we faced in Redmine.

10

JIRA Research Report Project G22-2025FP (TZQI)

2.2.5 Workflow Summary
e Creation: New tasks are created and land in the Backlog Section (Bottom)
e Planning: We drag tasks UP into the Sprint Section (Top)

Activation: We click “Start Sprint” to lock the scope

Execution: The Sprint items move to the Active Board

e Collection: During the sprint, new ideas land in the Backlog section, waiting for the next
planning cycle

11

JIRA Research Report Project G22-2025FP (TZQI)

2.3 The Active Board Screen (Execution Area)
2.3.1 What is it?

The Board is where the actual day-to-day work happens. Once you start a sprint, all your
committed tasks show up here as cards in columns. You will probably check this screen several
times a day to see how things are going and move tasks along.

2.3.2 What appears on this screen?

The Board has THREE COLUMNS:

e TO DO (Left): Tasks that have not been started yet. Everything lands here when the
sprint begins

e IN PROGRESS (Middle): Tasks someone is actively working on right now
e DONE (Right): Finished tasks

Figure 5: Board view showing TO DO, IN PROGRESS, and DONE columns for visual task
management

2.3.3 Why is this better than Redmine?

e Redmine: Click on task, find the status dropdown, select new status, save, wait for page
to reload. Takes forever for something so simple

e Jira: Just grab the card and drag it to another column. Done in a second

12

JIRA Research Report Project G22-2025FP (TZQI)

2.4

Additional Views

Besides Timeline, Backlog, and Board, Jira has a few other views that come in handy.

2.4.1 The List View (Excel-Style)

List view shows all your issues in a table format, kind of like Excel or how Redmine looks by
default. Good for when you need to see everything at once or make bulk changes.

COLUMNS (Customizable):

Key: TZQI-2, TZQI-3, TZQI-4...

Type: Icon showing Task/Bug/Sub-task
Summary: Full task title

Assignee: Name/avatar

Status: To Do, In Progress, Done
Priority: High, Medium, Low

Due Date: Calendar date

Story Points: Number

Epic Link: G22-2025-Final Project

ROWS:

Each row = one issue
For G22-2025FP: Shows all 6 main tasks + 5 sub-tasks = 11 rows
Can be filtered, sorted, grouped

Inline editing available (click cell to edit)

When to use List view?

1.

Bulk Operations: Select multiple issues, change assignee for 10 tasks at once, update
due dates in bulk, add labels to multiple items

. Exporting Data: Export to CSV/Excel for external reporting, university submission

reports, management status updates

. Filtering and Search: Filter by Assignee, Status, Priority, Epic, Sprint; quick search by

text; save custom filters

. Comparison: Compare due dates across all tasks, see which tasks are overdue (red dates),

identify unassigned work

For G22-2025FP: List view shows all work items in sortable columns. We can quickly see that
all items are assigned to members, all are linked to Epic TZQI-13, and dates span December
11-25.

13

JIRA Research Report Project G22-2025FP (TZQI)

Figure 6: List view showing all issues in spreadsheet format with sortable columns and filtering
options

2.4.2 The Pages View (Documentation/Wiki)

Pages (used to be called Confluence) is Jira’s built-in documentation system. While issues track
what needs to get done, Pages is where you explain the why and how. This is where you put
project docs, meeting notes, technical write-ups, and so on.

PAGE TREE (Left Sidebar):
e Hierarchical structure showing parent/child pages
e For G22-2025FP: “G22-2025FP Home” is the parent

e 5 child pages nested underneath:

Project Details

Group Members

— UML Diagrams

— Code

Results

PAGE CONTENT (Main Area):
e Rich text editor (like Word)

Formatting: Bold, italic, headings, lists, tables

Code blocks with syntax highlighting

FEmbedded images and diagrams

Links to Jira issues (type “TZQI-” to link)

Attachments (PDFs, images, files)

Comments section for team discussion

14

JIRA Research Report Project G22-2025FP (TZQI)

2.4.3 Why is this better than Redmine Wiki?

INTEGRATION: In Redmine, the Wiki is completely separate and has no real connection to
your issues. In Jira Pages, you can type “TZQI-5” and it automatically creates a clickable link.
Hover over it to see issue details, click to open it.

COLLABORATION: Redmine only shows who edited the page last. Jira Pages lets multiple
people edit at the same time (like Google Docs), you can @mention teammates, and leave inline
comments.

VERSION CONTROL: Both keep page history. But Jira shows you exactly who changed

what with a visual comparison, and you can restore old versions with one click.

Figure 7: Pages view showing hierarchical page tree in the left sidebar

Figure 8: Pages content area with rich text editor, formatting options, and collaboration features

15

JIRA Research Report Project G22-2025FP (TZQI)

3 Step-by-Step Implementation Guide

Now for the practical part. This section walks through exactly what we did to set up Jira and
migrate our data from Redmine. Screenshots are from our actual TZQI project.

3.1 Phase 1: Environment Initialization

Before moving any tasks over, we had to set up the workspace first. This meant picking the
right project template for our needs.

3.1.1 Step 1: Create the Project Space
We logged into Jira and found the “Create Project” button at the top.

The screenshot shows the Jira Spaces dashboard. That blue “Create space” button in the top
right is where you start. On the right side you can see the Templates panel we picked “Scrum”
since we wanted to work in sprints.

Template Selection:
e Clicked “Create space”
e Got two options: Kanban or Scrum
e We went with Scrum

e Why? Our project has a hard deadline, so we needed the Sprint feature to break work
into fixed 2-week chunks (December 11-25). Kanban is more of a continuous flow thing
and does not have time-boxing built in

Project Details:
e Name: Entered our project name

e Key: Jira gave us “TZQI” automatically, so all our issues got numbered TZQI-1, TZQI-2,
etc.

e Type: Team-managed software

Figure 9: Jira Spaces dashboard showing “Create space” button and Scrum template selection

16

JIRA Research Report Project G22-2025FP (TZQI)

3.1.2 Step 2: Team Onboarding (User Management)

A project tool is not much use if you are the only one on it. We needed to add the team so we
could assign tasks properly.

What we did:

1.

2
3
4.
5

Went to Project Settings (the gear icon) then People

. Clicked “Add People”

. Put in Shrestha Anjal’s email

Set role to “Member” (so he can create and edit issues)

. Hit “Add”

Result: Now both Ghosh Deb Kumar and Shrestha Anjal are in the system. This step matters
because without it, you cannot assign tasks to anyone the Assignee dropdown would be empty.

Side note: In Redmine, tasks often got left as “Unassigned” and nobody knew who was supposed
to do what. In Jira, you pretty much have to assign every task to someone, which keeps things
clearer.

Figure 10: Access settings page showing team members with “Add people” button and Admin-
istrator roles

17

JIRA Research Report Project G22-2025FP (TZQI)

3.2 Phase 2: Populating the Backlog (The Migration)

This is where we actually moved the data. We manually entered all the items from Redmine
into the Jira Backlog to test out the workflow.

3.2.1 Step 1: Locate the Creation Tool

At the top of the screen there is a blue “Create” button. Click that and you get the “Create
Issue” window, which is how you add anything to Jira.

Figure 11: Create Issue modal dialog showing fields for Space, Work type, Status, Summary,
and Description

The screenshot shows the Create Issue dialog. This is what we used to add everything. The
main fields are:

Space: G22-2025FP (TZQI) our project

Work type: dropdown where you pick Task, Story, Epic, Bug, Sub-task, etc.

Status: starts as To Do

e Summary: title of the issue

Description: text area with formatting options

Blue “Create” button at the bottom to save it

3.2.2 Step 2: Creating the First Issue - The Epic
We started with the Epic since it is the top-level container that holds all the other tasks.
What we did:

1. In the Create dialog, clicked the “Work type” dropdown

2. Selected “Epic”

3. In Summary, typed “G22-2025-Final Project”

4. Scrolled down to add description, start date, and end date

5. Clicked “Create”

18

JIRA Research Report Project G22-2025FP (TZQI)

Figure 12: Create Issue dialog with Work type dropdown expanded showing Epic, Task, Story,
Bug, Sub-task options

Figure 13: Left: Epic form with Summary field filled. Right: Description and date fields after
scrolling down

Result: Epic created. This becomes the container that links all our tasks together.

Why make an Epic first? Jira has a hierarchy: Epic > Task > Sub-task. The Epic is like
the umbrella for the whole project. All the individual features (UML, Jira research, Wiki, etc.)
get linked to this Epic, which makes them show up together on the Timeline.

19

JIRA Research Report Project G22-2025FP (TZQI)

Figure 14: Backlog view showing Epic “G22-2025-Final Project” with purple Epic icon

3.2.3 Step 3: Creating Main Tasks
Next up, we created the 6 main tasks from our Redmine system.
For each task, we did this:
1. Click “Create”
Pick “Task” as the Work type
Enter the title from Redmine (like “Feature #1489: UML)
Add a description with details
Set Assignee to either Ghosh Deb Kumar or Shrestha Anjal
Set Story Points (we used 5 for most tasks)
Link to Epic by selecting “G22-2025-Final Project” from the Epic Link dropdown
Set Start Date and Due Date (you need both for the Timeline to work!)
Click “Create”

© ® N e ks wN

20

JIRA Research Report

Figure 15: Task creation dialog showing fields for Summary, Assignee, Story Points, and Epic

Link

Tasks Created:

After adding everything, you can see all the data sitting in the backlog all our tasks plus the

TZQI-2: Feature #1489:
TZQI-3: Feature #1491:
TZQI-4: Feature #1494:
TZQI-5: Feature #1496:
TZQI-6: Feature #1495:

UML (5 points, Dec 11-15)
Developer (3 points, Dec 11-18)
Jira (6 points, Dec 16-25)

Wiki (4 points, Dec 16-22)
Doxygen (5 points, Dec 18-25)

TZQI-7: Support #1515: UML revise (5 points, Dec 23-25)

Test1 item we created earlier.

Figure 16: Backlog populated with all 6 main tasks and Epic linked together

21

Project G22-2025FP (TZQI)

JIRA Research Report Project G22-2025FP (TZQI)

3.2.4 Step 4: Creating Sub-tasks (Wiki Pages)

The Wiki task (TZQI-5) needed 5 child pages. In Jira, these are called “Sub-tasks” and they
show up indented under their parent.

For each sub-task:
1. Clicked on TZQI-5 (Wiki) in the Backlog to open it
. Inside the issue view, clicked “Create sub-task”
. Work type was already set to Sub-task
. Entered the title like “TZQI-8: Create Project Details page”

2

3

4

5. Parent was automatically linked to TZQI-5

6. Set Assignee, Story Points (1 point each), and dates
7

. Clicked “Create”

Figure 17: Clicking on a task to open it and view “Create sub-task” option

22

JIRA Research Report Project G22-2025FP (TZQI)

Figure 18: Creating sub-task with Summary, Parent link, Assignee, and Story Points fields

Sub-tasks Created:
e TZQI-8: Create Project Details page (1 point)
e TZQI-9: Create Group Members page (1 point)
e TZQI-10: Create UML Diagrams page (1 point)
e TZQI-11: Create Code page (1 point)
o TZQI-12: Create Results page (1 point)

Result: The 5 sub-tasks now appear indented under TZQI-5 in the Backlog. You can clearly
see the parent-child relationship. Total count: 1 Epic + 6 Tasks + 5 Sub-tasks = 12 issues
migrated from Redmine.

23

JIRA Research Report Project G22-2025FP (TZQI)

3.3 Phase 3: The Planning Ceremony (Sprint Creation)
Okay so now all our issues are in the Backlog, but they are just sitting there not active yet. To
actually start working on them, we need to put them into a Sprint. This is the sprint planning
step.
3.3.1 What is a Sprint?
A Sprint is basically a time box (usually 1-4 weeks) where you commit to finishing certain tasks.
For our project, we set up a 2-week sprint running December 11-25, 2025.
3.3.2 Step 1: Create the Sprint Container
On the Backlog screen, there is a “Create Sprint” button in the top-right corner.
What we did:
1. Clicked “Create Sprint”
2. A new grey box appeared at the top of the Backlog labeled “TZQI Sprint 1”

3. This box was empty, waiting for us to drag tasks into it

Figure 19: Backlog screen with “Create Sprint” button visible in top-right corner

3.3.3 Step 2: Drag and Drop Planning

This is the key part dragging tasks from the Backlog into the Sprint means you are committing
to finish them.

What we did:
1. Found our Epic TZQI-13 in the Backlog section (at the bottom)
2. Clicked and held the card
3. Dragged it up into the “TZQI Sprint 1” box
4. Let go and it moved into the Sprint
5. Did the same for all 6 main tasks (TZQI-2 through TZQI-7)

24

JIRA Research Report Project G22-2025FP (TZQI)

6. And again for all 5 sub-tasks (TZQI-8 through TZQI-12)

Something cool: As we dragged each item in, Jira automatically added up the Story Points
at the bottom of the Sprint box. Our total came to 30 points (5+3+6-+4+5+5 for tasks plus
141+1+1+1 for sub-tasks).

This total helps you see if you are biting off more than you can chew.

Figure 20: Sprint 1 filled with all 12 items (Epic + Tasks + Sub-tasks) showing 30 Story Points
total. Backlog section below shows 2 bugs and one task for later

3.3.4 Step 3: Start the Sprint (Setting Dates)

With everything in the Sprint container, time to actually kick it off. This switches the tasks
from “planned” to “active”.

What we did:
1. Clicked the “Start Sprint” button at the top-right of the Sprint 1 box
2. A dialog popped up asking for:
e Sprint Name: kept it as “TZQI Sprint 1”
e Duration: picked “2 weeks” from the dropdown
e Start Date: December 11, 2025 (set automatically)
e End Date: December 25, 2025 (calculated automatically)
3. Clicked “Start”

Result: The screen jumped from Backlog view to Board view. All 12 items moved from planning
mode into execution mode.

25

JIRA Research Report Project G22-2025FP (TZQI)

Figure 21: Left: Sprint filling with items being dragged. Right: “Start Sprint” dialog with
duration set to “2 weeks” and dates visible

Heads up: Once you start a sprint, you cannot easily undo it without completing or canceling
the whole thing. So make sure you have everything in there before clicking Start.

26

JIRA Research Report Project G22-2025FP (TZQI)

3.4 Phase 4: Daily Execution (Using the Board)

After starting the sprint, Jira took us straight to the Board view. This is where day-to-day work
gets done.

What we saw:
e TO DO (Left): All 12 items started here
e IN PROGRESS (Middle): Empty, waiting for someone to start working
e DONE (Right): Empty, will fill up as tasks get finished

3.4.1 Step 1: Moving a Task to “In Progress”
When one of us started working on TZQI-2 (UML), here is what happened:
1. Found the TZQI-2 card in the TO DO column
2. Clicked and held it
3. Dragged it over to the IN PROGRESS column
4. Let go

Result: Card moved right away. Now anyone who opens Jira can see that someone is working

on UML.

Figure 22: Board showing TZQI-2 in the IN PROGRESS column, other items in TO DO, and
DONE empty

Why this is nice: In Redmine, updating status meant clicking into the issue, finding the
dropdown, picking the new status, saving, then waiting for the page to reload. In Jira you just
drag and drop.

3.4.2 Step 2: Team Collaboration (Comments)

Sometimes you need to talk to teammates about a task. Jira has built-in commenting for this.

27

JIRA Research Report Project G22-2025FP (TZQI)

Example: One of us realized we needed Lucidchart for the UML diagrams and the other person
needed to set up an account.

What we did:
1. Clicked on the TZQI-2 card to open the detail panel
2. Scrolled to the “Comments” section
3. Typed: “@QAnjal Please create Lucidchart account and share access for UML diagrams”
4. Clicked “Save”

Result: The other person got an email notification plus an alert in Jira. He replied: “Done.
Account shared.” The whole conversation stays saved in the task history.

Figure 23: Task detail panel showing Comments section with conversation between team mem-
bers using @mentions

3.4.3 Step 3: Completing Work (Moving to Done)
When a task is finished, you update the status:
1. Finished the UML diagrams
2. Dragged TZQI-2 from IN PROGRESS to DONE
3. Card turned green
4. Progress bar at the top updated to “1 of 12 items completed”

Result: Visual progress tracking. You can see at a glance how much is done without asking
anyone for a status update.

28

JIRA Research Report Project G22-2025FP (TZQI)

Figure 24: Board showing TZQI-2 moved to DONE column (green), progress bar updated to “1
of 12 items completed”

29

JIRA Research Report Project G22-2025FP (TZQI)

3.5 Phase 5: Creating Pages (The Wiki)
With tasks and sprint set up, the last part was setting up our documentation. In Redmine, we
had a separate Wiki tab. In Jira, you use “Pages” which ties directly into your project.
3.5.1 Step 1: Creating Main Pages (Wiki Pages)
We created 1 main page plus 5 sub-pages to match what we had in Redmine.
For each page:
1. Clicked the “Pages” button

2. Picked “Blank Page” (or whatever template you want) from the “Create a Page” panel on
the right

3. Entered the title
4. Added content, links to sub-pages, project overview, etc.

5. Clicked “Publish”

Figure 25: Left: Pages button and “Create a Page” interface. Right: Selecting Blank Page
template

3.5.2 Step 2: Creating Sub-Pages (Wiki Pages)
Next we made the 5 sub-pages.
For each sub-page:
1. Clicked on the title of the parent page
2. Found the “+” mark on the right side and clicked “Create a child page”
3. Entered the title (“Project Details”, “Group Members”, etc.)
4. Added content
5. Clicked “Publish”

30

JIRA Research Report Project G22-2025FP (TZQI)

Figure 26: Page tree with “+” mark showing “Create a child page” option visible

3.5.3 Step 3: Editing Pages (Wiki Pages)
To edit existing pages:

For each page:

—_

. Click on the page title to open it

2. Click “Edit” on the right side

3. Use the toolbar at the top to change font size, add links, emojis, pictures, etc.
4. Click “Update”

Figure 27: Pages editor with Edit button and formatting toolbar with font size, links, emoji,
and picture options

Result: We got the full documentation structure moved over: 1 parent page with 5 child pages
underneath. The nice thing compared to Redmine is the Page Tree in the sidebar you can see
the whole document structure without clicking around. Plus you can link directly to tasks (like
TZQI-13) inside the page text, so docs and tasks stay connected.

The other big wins: multiple people can edit at the same time (like Google Docs), you can
@mention teammates, and you can restore old versions with one click. Redmine’s wiki cannot
do any of that.

31

JIRA Research Report Project G22-2025FP (TZQI)

4 Summary of Migration Phases

4.1
[]

4.2

Phase 1: Environment Initialization

Created project with Scrum template

Added team members (Ghosh Deb Kumar, Shrestha Anjal) with Administrator roles

Phase 2: Populating the Backlog
Created 1 Epic (TZQI-13): “G22-2025-Final Project”

Created 6 Main Tasks (TZQI-2 to TZQI-7): UML, Developer, Jira, Wiki, Doxygen, UML
Revision

Created 5 Sub-tasks (TZQI-8 to TZQI-12): Wiki page creation tasks
Linked all tasks to the Epic
Set assignees, story points (total 30 points), and dates (Dec 11-25, 2025)

Phase 3: Sprint Planning

Created Sprint 1 container

Dragged all 12 items into the sprint

Started sprint with 2-week duration (December 11-25, 2025)

System automatically switched to Board view

Phase 4: Daily Execution
Moved tasks through workflow: To Do — In Progress — Done
Used @mentions for team communication

Tracked progress visually on the Board

Phase 5: Creating Documentation

Created main project page (G22-2025FP Home)

Created 5 child pages (Project Details, Group Members, UML Diagrams, Code, Results)
Edited pages with rich-text content and embedded links

Published documentation accessible to all team members

32

JIRA Research Report Project G22-2025FP (TZQI)

5 Conclusion

After going through this whole process, we can say that Jira does have some real advantages
over Redmine, especially if your team works in sprints:

e Visual Management: The Timeline and Board views let you see status at a glance
instead of clicking through lists

e Integrated Documentation: Pages is built right in and links to your issues, so you do
not need a separate wiki

e Agile Support: The Sprint, Backlog, and story points features actually support how
agile teams work

e Team Collaboration: Comments, @Qmentions, and version history make it easier to
communicate and track changes

e Scalability: The Epic > Task > Sub-task hierarchy handles complexity better than flat
lists

Based on our testing, switching from Redmine to Jira seems doable. The G22-2025FP project
could benefit from better visualization, tighter documentation integration, and proper sprint
management.

33

	Project Team Members
	Introduction
	Project Overview
	Current System Limitations (Redmine)
	Jira Advantages
	Research Scope and Team

	Jira Screens and Concepts Explained
	The Timeline Screen (Roadmap)
	What is it?
	What appears on this screen?
	Why is this better than Redmine?
	Critical Feature for G22-2025FP

	The Planning Engine: Backlog and Sprint Management
	Concept: Backlog vs. Sprint (Storage vs. Focus)
	The Interface: How the Screen Looks
	Comparison: Why is this better than Redmine?
	Critical Feature for G22-2025FP (Sub-tasks)
	Workflow Summary

	The Active Board Screen (Execution Area)
	What is it?
	What appears on this screen?
	Why is this better than Redmine?

	Additional Views
	The List View (Excel-Style)
	The Pages View (Documentation/Wiki)
	Why is this better than Redmine Wiki?

	Step-by-Step Implementation Guide
	Phase 1: Environment Initialization
	Step 1: Create the Project Space
	Step 2: Team Onboarding (User Management)

	Phase 2: Populating the Backlog (The Migration)
	Step 1: Locate the Creation Tool
	Step 2: Creating the First Issue - The Epic
	Step 3: Creating Main Tasks
	Step 4: Creating Sub-tasks (Wiki Pages)

	Phase 3: The Planning Ceremony (Sprint Creation)
	What is a Sprint?
	Step 1: Create the Sprint Container
	Step 2: Drag and Drop Planning
	Step 3: Start the Sprint (Setting Dates)

	Phase 4: Daily Execution (Using the Board)
	Step 1: Moving a Task to ``In Progress''
	Step 2: Team Collaboration (Comments)
	Step 3: Completing Work (Moving to Done)

	Phase 5: Creating Pages (The Wiki)
	Step 1: Creating Main Pages (Wiki Pages)
	Step 2: Creating Sub-Pages (Wiki Pages)
	Step 3: Editing Pages (Wiki Pages)

	Summary of Migration Phases
	Phase 1: Environment Initialization
	Phase 2: Populating the Backlog
	Phase 3: Sprint Planning
	Phase 4: Daily Execution
	Phase 5: Creating Documentation

	Conclusion

