Project

General

Profile

Actions

Codes » History » Revision 5

« Previous | Revision 5/7 (diff) | Next »
Zhi Jie YEW, 11/06/2025 02:50 PM


← Back to Start Page

Codes

gui.py

# gui.py

import tkinter as tk
from tkinter import ttk, filedialog, messagebox
import threading
import json
import os

# Import the logic classes
from main_alpha_blender import MainAlphaBlender
from video_processor import VideoProcessor

class BlenderGUI:
    """A Tkinter GUI with tabs for image and video edge blending.""" 
    def __init__(self, master):
        self.master = master
        master.title("Image and Video Edge Blender")
        master.geometry("600x450") # Increased height for new buttons

        # --- Create a Tabbed Interface ---
        self.notebook = ttk.Notebook(master)
        self.notebook.pack(pady=10, padx=10, fill="both", expand=True)

        self.image_tab = ttk.Frame(self.notebook, padding="10")
        self.video_tab = ttk.Frame(self.notebook, padding="10")

        self.notebook.add(self.image_tab, text="Image Blender")
        self.notebook.add(self.video_tab, text="Video Processor")

        # --- Populate each tab ---
        self.create_image_widgets()
        self.create_video_widgets()

        # --- NEW: Add a frame at the bottom for config management ---
        self.config_frame = ttk.Frame(master, padding=(10, 0, 10, 10))
        self.config_frame.pack(fill=tk.X, side=tk.BOTTOM)
        self.create_config_widgets()

        # --- NEW: Load default config on startup ---
        # It will silently fail if config.json doesn't exist, using hardcoded defaults.
        self.load_config(filepath="config.json", silent=True)

    def create_image_widgets(self):
        """Creates all widgets for the Image Blender tab.""" 
        self.image_blender = MainAlphaBlender()

        ttk.Label(self.image_tab, text="Input Image Directory:").grid(row=0, column=0, sticky=tk.W, pady=2)
        self.img_input_path_var = tk.StringVar(value=self.image_blender.image_path)
        ttk.Entry(self.image_tab, textvariable=self.img_input_path_var, width=50).grid(row=0, column=1, sticky=tk.EW, padx=5)
        ttk.Button(self.image_tab, text="Browse...", command=self.select_img_input_dir).grid(row=0, column=2)

        ttk.Label(self.image_tab, text="Output Directory:").grid(row=1, column=0, sticky=tk.W, pady=2)
        self.img_output_path_var = tk.StringVar(value=self.image_blender.output_dir)
        ttk.Entry(self.image_tab, textvariable=self.img_output_path_var, width=50).grid(row=1, column=1, sticky=tk.EW, padx=5)
        ttk.Button(self.image_tab, text="Browse...", command=self.select_img_output_dir).grid(row=1, column=2)

        ttk.Label(self.image_tab, text="Blend Width (pixels):").grid(row=2, column=0, sticky=tk.W, pady=5)
        self.img_blend_width_var = tk.IntVar(value=self.image_blender.blend_width)
        ttk.Entry(self.image_tab, textvariable=self.img_blend_width_var, width=10).grid(row=2, column=1, sticky=tk.W, padx=5)

        ttk.Label(self.image_tab, text="Gamma Value:").grid(row=3, column=0, sticky=tk.W, pady=2)
        self.img_gamma_var = tk.DoubleVar(value=self.image_blender.gamma_value)
        ttk.Entry(self.image_tab, textvariable=self.img_gamma_var, width=10).grid(row=3, column=1, sticky=tk.W, padx=5)

        ttk.Label(self.image_tab, text="Blend Method:").grid(row=4, column=0, sticky=tk.W, pady=2)
        self.img_method_var = tk.StringVar(value=self.image_blender.method)
        methods = ['linear', 'cosine', 'quadratic', 'sqrt', 'log', 'sigmoid']
        ttk.Combobox(self.image_tab, textvariable=self.img_method_var, values=methods, state="readonly").grid(row=4, column=1, sticky=tk.W, padx=5)

        self.img_preview_var = tk.BooleanVar(value=self.image_blender.preview)
        ttk.Checkbutton(self.image_tab, text="Show Preview After Processing", variable=self.img_preview_var).grid(row=5, column=1, sticky=tk.W, pady=10, padx=5)

        ttk.Button(self.image_tab, text="Run Blending Process", command=self.run_image_blending).grid(row=6, column=1, pady=20, sticky=tk.W)

        self.img_status_var = tk.StringVar(value="Ready.")
        ttk.Label(self.image_tab, textvariable=self.img_status_var, font=("Helvetica", 10, "italic")).grid(row=7, column=0, columnspan=3, sticky=tk.W, pady=5)

        self.image_tab.columnconfigure(1, weight=1)

    def create_video_widgets(self):
        """Creates all widgets for the Video Processor tab.""" 
        self.video_processor = VideoProcessor()

        ttk.Label(self.video_tab, text="Input Video File:").grid(row=0, column=0, sticky=tk.W, pady=2)
        self.vid_input_path_var = tk.StringVar()
        ttk.Entry(self.video_tab, textvariable=self.vid_input_path_var, width=50).grid(row=0, column=1, sticky=tk.EW, padx=5)
        ttk.Button(self.video_tab, text="Browse...", command=self.select_vid_input_file).grid(row=0, column=2)

        ttk.Label(self.video_tab, text="Output Directory:").grid(row=1, column=0, sticky=tk.W, pady=2)
        self.vid_output_path_var = tk.StringVar(value=self.video_processor.output_dir)
        ttk.Entry(self.video_tab, textvariable=self.vid_output_path_var, width=50).grid(row=1, column=1, sticky=tk.EW, padx=5)
        ttk.Button(self.video_tab, text="Browse...", command=self.select_vid_output_dir).grid(row=1, column=2)

        ttk.Label(self.video_tab, text="Blend Width (pixels):").grid(row=2, column=0, sticky=tk.W, pady=5)
        self.vid_blend_width_var = tk.IntVar(value=self.video_processor.blend_width)
        ttk.Entry(self.video_tab, textvariable=self.vid_blend_width_var, width=10).grid(row=2, column=1, sticky=tk.W, padx=5)

        ttk.Label(self.video_tab, text="Blend Method:").grid(row=3, column=0, sticky=tk.W, pady=2)
        self.vid_method_var = tk.StringVar(value=self.video_processor.blend_method)
        methods = ['linear', 'cosine']
        ttk.Combobox(self.video_tab, textvariable=self.vid_method_var, values=methods, state="readonly").grid(row=3, column=1, sticky=tk.W, padx=5)

        self.run_video_button = ttk.Button(self.video_tab, text="Process Video", command=self.run_video_processing_thread)
        self.run_video_button.grid(row=4, column=1, pady=20, sticky=tk.W)

        self.vid_status_var = tk.StringVar(value="Ready.")
        ttk.Label(self.video_tab, textvariable=self.vid_status_var).grid(row=5, column=0, columnspan=3, sticky=tk.W, pady=5)

        self.video_tab.columnconfigure(1, weight=1)

    def create_config_widgets(self):
        """Creates the Load and Save configuration buttons.""" 
        ttk.Button(self.config_frame, text="Load Config", command=self.load_config).pack(side=tk.LEFT, padx=5)
        ttk.Button(self.config_frame, text="Save Config", command=self.save_config).pack(side=tk.LEFT, padx=5)

    def load_config(self, filepath=None, silent=False):
        """Loads settings from a JSON file and updates the GUI.""" 
        if filepath is None:
            filepath = filedialog.askopenfilename(
                title="Open Configuration File",
                filetypes=[("JSON files", "*.json"), ("All files", "*.*")]
            )

        if not filepath or not os.path.exists(filepath):
            if not silent:
                messagebox.showwarning("Load Config", "No configuration file selected or file not found.")
            return

        try:
            with open(filepath, 'r') as f:
                data = json.load(f)

            # Update Image Tab variables
            self.img_input_path_var.set(data.get("image_path", "OriginalImages"))
            self.img_output_path_var.set(data.get("output_dir", "Results"))
            self.img_blend_width_var.set(data.get("blend_width", 200))
            self.img_gamma_var.set(data.get("gamma_value", 1.4))
            self.img_method_var.set(data.get("blend_method", "cosine"))
            self.img_preview_var.set(data.get("preview", True))

            # Update Video Tab variables
            self.vid_input_path_var.set(data.get("video_input_path", ""))
            self.vid_output_path_var.set(data.get("video_output_dir", "VideoResults"))
            self.vid_blend_width_var.set(data.get("video_blend_width", 100))
            self.vid_method_var.set(data.get("video_blend_method", "linear"))

            if not silent:
                messagebox.showinfo("Load Config", f"Configuration loaded successfully from {os.path.basename(filepath)}.")

        except Exception as e:
            if not silent:
                messagebox.showerror("Load Config Error", f"Failed to load or parse the configuration file.\n\nError: {e}")

    def save_config(self):
        """Saves the current GUI settings to a JSON file.""" 
        filepath = filedialog.asksaveasfilename(
            title="Save Configuration File",
            defaultextension=".json",
            initialfile="config.json",
            filetypes=[("JSON files", "*.json"), ("All files", "*.*")]
        )

        if not filepath:
            return

        try:
            config_data = {
                # Image Tab settings
                "image_path": self.img_input_path_var.get(),
                "output_dir": self.img_output_path_var.get(),
                "blend_width": self.img_blend_width_var.get(),
                "gamma_value": self.img_gamma_var.get(),
                "blend_method": self.img_method_var.get(),
                "preview": self.img_preview_var.get(),

                # Video Tab settings
                "video_input_path": self.vid_input_path_var.get(),
                "video_output_dir": self.vid_output_path_var.get(),
                "video_blend_width": self.vid_blend_width_var.get(),
                "video_blend_method": self.vid_method_var.get()
            }

            with open(filepath, 'w') as f:
                json.dump(config_data, f, indent=4)

            messagebox.showinfo("Save Config", f"Configuration saved successfully to {os.path.basename(filepath)}.")

        except Exception as e:
            messagebox.showerror("Save Config Error", f"Failed to save the configuration file.\n\nError: {e}")

    # --- Callbacks for Image Tab ---
    def select_img_input_dir(self):
        path = filedialog.askdirectory(title="Select Input Image Directory")
        if path: self.img_input_path_var.set(path)

    def select_img_output_dir(self):
        path = filedialog.askdirectory(title="Select Output Directory")
        if path: self.img_output_path_var.set(path)

    def run_image_blending(self):
        self.image_blender.image_path = self.img_input_path_var.get()
        self.image_blender.output_dir = self.img_output_path_var.get()
        self.image_blender.blend_width = self.img_blend_width_var.get()
        self.image_blender.gamma_value = self.img_gamma_var.get()
        self.image_blender.method = self.img_method_var.get()
        self.image_blender.preview = self.img_preview_var.get()
        self.image_blender.update_paths()

        success, message = self.image_blender.run()
        if success:
            self.img_status_var.set(f"Success! {message}")
            messagebox.showinfo("Success", message)
        else:
            self.img_status_var.set(f"Error: {message}")
            messagebox.showerror("Error", message)

    # --- Callbacks for Video Tab ---
    def select_vid_input_file(self):
        path = filedialog.askopenfilename(title="Select Input Video File", filetypes=[("MP4 files", "*.mp4"), ("All files", "*.*")])
        if path: self.vid_input_path_var.set(path)

    def select_vid_output_dir(self):
        path = filedialog.askdirectory(title="Select Output Directory")
        if path: self.vid_output_path_var.set(path)

    def update_video_status(self, message):
        """Thread-safe method to update the GUI status label.""" 
        self.vid_status_var.set(message)

    def run_video_processing_thread(self):
        """Starts the video processing in a new thread to avoid freezing the GUI.""" 
        self.run_video_button.config(state="disabled")
        thread = threading.Thread(target=self.run_video_processing)
        thread.daemon = True
        thread.start()

    def run_video_processing(self):
        """The actual processing logic, run in the background thread.""" 
        try:
            self.video_processor.input_video_path = self.vid_input_path_var.get()
            self.video_processor.output_dir = self.vid_output_path_var.get()
            self.video_processor.blend_width = self.vid_blend_width_var.get()
            self.video_processor.blend_method = self.vid_method_var.get()

            success, message = self.video_processor.run(status_callback=self.update_video_status)

            if success:
                messagebox.showinfo("Success", message)
            else:
                messagebox.showerror("Error", message)

        except Exception as e:
            messagebox.showerror("Critical Error", f"An unexpected error occurred: {e}")
        finally:
            self.run_video_button.config(state="normal")

main_alpha_blender.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import cv2
import numpy as np
import os
from config_reader import ConfigReader

class MainAlphaBlender(object):
    def __init__(self, config_path="config.json"):
        try:
            self.__config_reader = ConfigReader(config_path)
            self.blend_width = self.__config_reader.get_blend_width()
            self.gamma_value = self.__config_reader.get_gamma_value()
            self.method = self.__config_reader.get_blend_method()
            self.output_dir = self.__config_reader.get_output_dir()
            self.preview = self.__config_reader.get_preview()
            self.image_path = self.__config_reader.get_image_path()
        except FileNotFoundError:
            self.blend_width = 200
            self.gamma_value = 1.4
            self.method = "cosine" 
            self.output_dir = "Results" 
            self.preview = True
            self.image_path = "OriginalImages" 
        self.update_paths()

    def update_paths(self):
        self.left_image_path = os.path.join(self.image_path, "Left.jpg")
        self.right_image_path = os.path.join(self.image_path, "Right.jpg")

    def create_alpha_gradient(self, blend_width, side, method="cosine"):
        if method == 'linear':
            alpha_gradient = np.linspace(0, 1, blend_width)
        elif method == 'cosine':
            t = np.linspace(0, np.pi, blend_width)
            alpha_gradient = (1 - np.cos(t**0.85)) / 2
        elif method == 'quadratic':
            t = np.linspace(0, 1, blend_width)
            alpha_gradient = t**2
        elif method == 'sqrt':
            t = np.linspace(0, 1, blend_width)
            alpha_gradient = np.sqrt(t)
        elif method == 'log':
            t = np.linspace(0, 1, blend_width)
            alpha_gradient = np.log1p(9 * t) / np.log1p(9)
        elif method == 'sigmoid':
            t = np.linspace(0, 1, blend_width)
            alpha_gradient = 1 / (1 + np.exp(-12 * (t - 0.5)))
            alpha_gradient = (alpha_gradient - alpha_gradient.min()) / (alpha_gradient.max() - alpha_gradient.min())
        else:
            raise ValueError("Invalid method: choose from 'linear', 'cosine', 'quadratic', 'sqrt', 'log', or 'sigmoid'")
        if side == 'right':
            alpha_gradient = 1 - alpha_gradient
        return alpha_gradient

    def gamma_correction(self, image, gamma):
        img_float = image.astype(np.float32) / 255.0
        mean_intensity = np.mean(img_float)
        adaptive_gamma = gamma * (0.5 / (mean_intensity + 1e-5))
        adaptive_gamma = np.clip(adaptive_gamma, 0.8, 2.0)
        corrected = np.power(img_float, 1.0 / adaptive_gamma)
        return np.uint8(np.clip(corrected * 255, 0, 255))

    def alpha_blend_edge(self, image, blend_width, side, method="cosine"):
        height, width, _ = image.shape
        blended_image = image.copy()
        alpha_gradient = self.create_alpha_gradient(blend_width, side, method)
        if side == 'right':
            roi = blended_image[:, width - blend_width:]
        elif side == 'left':
            roi = blended_image[:, :blend_width]
        else:
            raise ValueError("Side must be 'left' or 'right'")
        gradient_3d = alpha_gradient[np.newaxis, :, np.newaxis]
        gradient_3d = np.tile(gradient_3d, (height, 1, 3))
        if side == 'right':
            blended_image[:, width - blend_width:] = (roi * gradient_3d).astype(np.uint8)
        else:
            blended_image[:, :blend_width] = (roi * gradient_3d).astype(np.uint8)
        return blended_image

    def show_preview(self, left_image, right_image, scale=0.5):
        h = min(left_image.shape[0], right_image.shape[0])
        left_resized = cv2.resize(left_image, (int(left_image.shape[1]*scale), int(h*scale)))
        right_resized = cv2.resize(right_image, (int(right_image.shape[1]*scale), int(h*scale)))
        combined = np.hstack((left_resized, right_resized))
        cv2.imshow("Preview (Left + Right)", combined)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    def run(self):
        try:
            os.makedirs(self.output_dir, exist_ok=True)
            left_img = cv2.imread(self.left_image_path, cv2.IMREAD_COLOR)
            right_img = cv2.imread(self.right_image_path, cv2.IMREAD_COLOR)
            if left_img is None or right_img is None:
                raise FileNotFoundError(f"Could not read images from '{self.image_path}'. Check path.")
            left_blended = self.alpha_blend_edge(left_img, self.blend_width, side='right', method=self.method)
            right_blended = self.alpha_blend_edge(right_img, self.blend_width, side='left', method=self.method)
            left_gamma = self.gamma_correction(left_blended, self.gamma_value)
            right_gamma = self.gamma_correction(right_blended, self.gamma_value)
            left_output_path = os.path.join(self.output_dir, f"{self.method}_left_gamma.jpg")
            right_output_path = os.path.join(self.output_dir, f"{self.method}_right_gamma.jpg")
            cv2.imwrite(left_output_path, left_gamma)
            cv2.imwrite(right_output_path, right_gamma)
            if self.preview:
                self.show_preview(left_gamma, right_gamma)
            return (True, f"Images saved successfully in '{self.output_dir}'.")
        except (FileNotFoundError, ValueError) as e:
            return (False, str(e))
        except Exception as e:
            return (False, f"An unexpected error occurred: {e}")
        finally:
            cv2.destroyAllWindows()

main.py

import tkinter as tk
from gui import BlenderGUI

if __name__ == "__main__":
    """ 
    Main entry point for the application.
    Initializes and runs the Tkinter GUI.
    """ 
    root = tk.Tk()
    app = BlenderGUI(master=root)
    root.mainloop()

video_processor.py

import cv2
import numpy as np
import os
import time

class VideoProcessor:
    """ 
    A class to handle dividing a video and applying alpha blending to the edges.
    Consolidates logic from divide_video.py, apply_alpha_blending_on_video.py, and Video_utility.py.
    """ 
    def __init__(self, config=None):
        """Initializes the processor with default or provided settings.""" 
        # Set default parameters
        self.input_video_path = "" 
        self.output_dir = "VideoResults" 
        self.blend_width = 100
        self.blend_method = "linear" 
        self.divide_ratio = 2/3

        # Overwrite defaults with a configuration dictionary if provided
        if config:
            self.input_video_path = config.get("input_video_path", self.input_video_path)
            self.output_dir = config.get("output_dir", self.output_dir)
            self.blend_width = config.get("blend_width", self.blend_width)
            self.blend_method = config.get("blend_method", self.blend_method)
            self.divide_ratio = config.get("divide_ratio", self.divide_ratio)

    def _create_alpha_gradient(self, blend_width, side, method):
        """Creates a 1D alpha gradient for blending.""" 
        if method == 'linear':
            alpha_gradient = np.linspace(0, 1, blend_width)
        elif method == 'cosine':
            t = np.linspace(0, np.pi, blend_width)
            alpha_gradient = (1 - np.cos(t)) / 2
        else:
            raise ValueError(f"Invalid blend method: {method}")

        if side == 'right':
            alpha_gradient = 1 - alpha_gradient  # Create a fade-out gradient
        return alpha_gradient

    def _blend_image_edge(self, image, blend_width, side, method):
        """Applies the alpha gradient to a single frame.""" 
        height, width, _ = image.shape
        blended_image = image.copy()
        alpha_gradient = self._create_alpha_gradient(blend_width, side, method)

        if side == 'right':
            roi = blended_image[:, width - blend_width:]
        elif side == 'left':
            roi = blended_image[:, :blend_width]
        else:
            raise ValueError("Side must be 'left' or 'right'")

        # Tile the 1D gradient to match the 3 color channels of the ROI
        gradient_3d = alpha_gradient[np.newaxis, :, np.newaxis]
        gradient_3d = np.tile(gradient_3d, (height, 1, 3))

        if side == 'right':
            blended_image[:, width - blend_width:] = (roi * gradient_3d).astype(np.uint8)
        else:
            blended_image[:, :blend_width] = (roi * gradient_3d).astype(np.uint8)

        return blended_image

    def _divide_video(self, input_path, output_left_path, output_right_path, status_callback):
        """Splits a video into two halves based on the divide_ratio.""" 
        cap = cv2.VideoCapture(input_path)
        if not cap.isOpened():
            raise FileNotFoundError(f"Could not open video file: {input_path}")

        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        midpoint = int(width * self.divide_ratio)

        out_left = cv2.VideoWriter(output_left_path, fourcc, fps, (midpoint, height))
        out_right = cv2.VideoWriter(output_right_path, fourcc, fps, (width - midpoint, height))

        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        frame_count = 0

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret: break

            frame_count += 1
            if status_callback and frame_count % 30 == 0: # Update status every 30 frames
                progress = int((frame_count / total_frames) * 100)
                status_callback(f"Dividing video... {progress}%")

            out_left.write(frame[:, :midpoint])
            out_right.write(frame[:, midpoint:])

        cap.release()
        out_left.release()
        out_right.release()

    def _apply_alpha_blending_to_video(self, input_path, output_path, side, status_callback):
        """Applies alpha blending to each frame of a video.""" 
        cap = cv2.VideoCapture(input_path)
        if not cap.isOpened(): raise FileNotFoundError(f"Could not open video for blending: {input_path}")

        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        frame_count = 0

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret: break

            frame_count += 1
            if status_callback and frame_count % 30 == 0:
                progress = int((frame_count / total_frames) * 100)
                status_callback(f"Blending {side} video... {progress}%")

            blended_frame = self._blend_image_edge(frame, self.blend_width, side, self.blend_method)
            out.write(blended_frame)

        cap.release()
        out.release()

    def run(self, status_callback=None):
        """Executes the full video processing pipeline.""" 
        try:
            start_time = time.time()
            os.makedirs(self.output_dir, exist_ok=True)

            # Define intermediate and final file paths
            temp_left_path = os.path.join(self.output_dir, "temp_left.mp4")
            temp_right_path = os.path.join(self.output_dir, "temp_right.mp4")
            final_left_path = os.path.join(self.output_dir, "final_left.mp4")
            final_right_path = os.path.join(self.output_dir, "final_right.mp4")

            if status_callback: status_callback("Starting to divide video...")
            self._divide_video(self.input_video_path, temp_left_path, temp_right_path, status_callback)

            if status_callback: status_callback("Starting to blend left video...")
            self._apply_alpha_blending_to_video(temp_left_path, final_left_path, "right", status_callback)

            if status_callback: status_callback("Starting to blend right video...")
            self._apply_alpha_blending_to_video(temp_right_path, final_right_path, "left", status_callback)

            if status_callback: status_callback("Cleaning up temporary files...")
            os.remove(temp_left_path)
            os.remove(temp_right_path)

            duration = time.time() - start_time
            message = f"Video processing complete in {duration:.2f}s. Files saved in '{self.output_dir}'." 
            if status_callback: status_callback(message)
            return (True, message)

        except Exception as e:
            if status_callback: status_callback(f"Error: {e}")
            return (False, str(e))

config_reader.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import json

class ConfigReader:
    """ 
    ConfigReader loads configuration settings from a JSON file.
    It now uses a single base path for input images.
    """ 

    def __init__(self, json_path: str):
        """ 
        Initialize the ConfigReader with the path to the configuration file.
        :param json_path: Path to the JSON configuration file
        """ 
        self.json_path = json_path
        self.config = None
        self.load_config()

    def load_config(self):
        """Load configuration data from the JSON file.""" 
        try:
            with open(self.json_path, 'r', encoding='utf-8') as f:
                self.config = json.load(f)
        except FileNotFoundError:
            raise FileNotFoundError(f"Configuration file not found: {self.json_path}")
        except json.JSONDecodeError as e:
            raise ValueError(f"Error decoding JSON: {e}")

    def get_blend_width(self) -> int:
        """Return the blending width.""" 
        return self.config.get("blend_width", 200)

    def get_gamma_value(self) -> float:
        """Return the gamma correction value.""" 
        return self.config.get("gamma_value", 1.0)

    def get_blend_method(self) -> str:
        """Return the blending method (e.g., 'cosine', 'linear').""" 
        return self.config.get("blend_method", "linear")

    def get_image_path(self) -> str:
        """Return the base directory of the input images.""" 
        return self.config.get("image_path", "")

    def get_output_dir(self) -> str:
        """Return the directory for output results.""" 
        return self.config.get("output_dir", "Results")

    def get_preview(self) -> bool:
        """Return the preview flag.""" 
        return self.config.get("preview", False)

Updated by Zhi Jie YEW 8 days ago · 5 revisions