
Introduction to OOA, 
OOD, and UML
‐Course Overview‐

College of Information Science and Engineering
Ritsumeikan University

Week 01



2

Acronyms
 OOA : Object-Oriented Analysis

 OOD: Object-Oriented Design

 UML: Unified Modeling Language



3

Today’s class outline
 Review of basic course information

 Contact details 
 Course objectives
 Textbook and materials
 Student guidelines and course policies 

 Course structure and overview
 Schedule of classes
 Brief review of OOA, OOD, and UML
 Topics in OOA, OOD, and UML

 About mini-tests , mid-term test, homework 
assignments, and self-preparation



4

 My name:
Igor Goncharenko

 E-mail: igor@fc.ritsumei.ac.jp
 Office: Creation Core, 707 (7th floor)
 Consultation: Daily, 13:00-18:00 (except 

on-line period, after May 2nd)

 Course name (in English):
Introduction to OOA, OOD, and UML

Contact details



5

 By e-mails (not so often)
 Web page for downloads:

http://www.dh.is.ritsumei.ac.jp/UML/

You can download slides (PDFs) after 
classes, mini-test problems (after 
solving the mini-tests), mid-term test, 
extra materials (PDFs, diagram files 
and documentation)

Communication



6

 The academic plan (curriculum ) of Ritsumeikan
University requires this course to be taught in 
English

 The goal of the course is to provide you with a 
basic understanding of OOA and OOD, which are 
very powerful methodologies for modern 
engineering fields, including efficient software 
development. 

 This knowledge will be extremely useful for 
understanding important stages of system design, 
systematic and analytical system development, 
testing and re-usability.

Course objectives



7

 Learning of OOA and OOD is supported by UML 
(Unified Modeling Language)

 UML is de facto standard for reliable industrial 
software development

 UML (current standard version UML 2.0)  is very 
useful for software diagram building

 UML does not require coding skills, it is a visual 
tool

UML : practical tool



8

Textbooks and materials
 Most knowledge of this course you are 

expected to get during lecture hours.
All materials (in PDF format) of this and all the 
future lectures cam be downloaded from our 
class Website.

 If you still do not have it, the textbook is 
available from the University’s bookstore:

Object-Oriented Analysis and Design: 
Understanding System Development  with 
UML 2.0 (by O’Docherty, Publ. by Wiley, 
ISBN 0470092408)



9

Textbook cover

 You can also buy this book through 
Amazon.com (it’s cheaper there!)



10

Companion textbook

 Software Engineering, 7th edition or 
newer, by Ian Sommerville, ISBN-10: 
9780321210265 



11

Free UML software

 Free download for first time from:

https://astah.net/products/free-student-license/

 Professional academic license (not free) will 
be purchased by the instructor in April



12

Usage of UML for PBL-2,-4

 Example: diagram of software structure 
reconstruction



13

Usage of UML for PBL
 Example: usage of UML for your posters



14

Usage of UML for PBL
 Example-2: “Use case diagram” and “activity 

diagram”



15

Activity diagram



16

Use case diagram



17

 Read the relevant materials – slides, etc. 
– before every class 

 Study the textbook before every class
 Complete all self-preparation 

assignments in due time 
 Whenever needed, learn new English 

vocabulary
 Maintain good self-discipline and pay 

attention in class
 Do your best in daily mini-tests

Student guidelines



18

 Do not sleep in class. If you must 
sleep, leave the classroom

 No cell phone use during the class
 Do not talk or even whisper. If you 

make noise then you will be 
brought out of the classroom
 When you make noise in class, you disturb the 

teacher
 When you whisper in class, you disturb

other students
 When you talk in class, you waste your time

Classroom policies



19

 Do copy assignment solutions from 
each other

 The solution must be your own 
work !

Classroom policy (on-line)



20

 Students who miss more than 5 lectures will 
automatically receive an ‘F’ mark and no 
credits

 Points:
Daily mini tests (which include self-

preparation assignments)  up to 30
One mid-semester test  up to 30
Final exam  up to 40

 Grading: less than 60 points  F,
60-69  C,
70-79  B,
80-89  A, over 89  A+

Grading policy



21

 Points will be given based on assignment 
completeness (usually, one week will be given 
to complete one assignment)

 Assignments will be uploaded to Manaba+R in 
DOC/DOCX format (and text format, when 
possible)

 Point policy during on-line period might be 
slightly changed, when you get full access to 
Internet via your personal computers

Point policy during on-line period



22

 Cheating will result in an automatic ‘F’ 
for the semester and turning the case 
over to the College administration. 
There will be no second chances

 When you feel you need help with 
your studies, contact the teacher but 
never try just to copy test answers 
from your friend or someone else

 Your tests must be your own, original 
work

Academic integrity



23

Schedule of classes
1. Course overview (today)
2. Objects
3. Classes
4. Inheritance 
5. Type systems 
6. Intermediate overview 

and evaluation
7. Development 

methodologies – I
8. Development 

methodologies - II

9. Requirement analysis
10. Problem analysis
11. System design 
12. Subsystem design
13. Specifications and re-

usability 
14. Testing 
15. Course overview
16. Final exam



24

About mid-term test
 Mid-term test is very helpful for your 

final exam!
 Once you successfully solve the mid-

term test, you will be almost 90% 
prepared for the final exam

 You can find the mid-term tests and all 
mini-tests on our UML class Website 
during the semester



25

What is the aim of this course ?
 The aim of this course is to give you a basic 

understanding of the processes and 
techniques used in object-oriented (OO) 
software development. The course clarifies 
the following questions: 
– How to create programs using object-oriented 

techniques? 
– What is needed prior program coding ? 
– How to conduct OO analysis and design?
– What techniques are needed to maintain 

software long life and re-usability ? 
– How to use UML for OO design ?



26

Features of the course
 Even skills in programming are not required, 

some topics are illustrated by simple pieces 
of codes of object-oriented languages (Java, 
C++, C#); code constructions will be 
explained

 When possible, diagrams will be given in 
UML style

 Code commenting examples will be given in 
Doxygen style

 The course knowledge is useful for your 
future Engineering PBL classes and real 
project development !



27

Further lectures 

 The following slides will introduce each 
lecture topic and give you some good 
reasons for wanting to learn it



28

 The concept of object is considered
– Mainly, from the point of view of object-oriented software;
– Depicting of objects by UML will be considered

 Encapsulation of objects is done by hiding 
of their private attributes (fields)

 Association and aggregation are two types 
of connections of objects. They combine 
objects in graph- or tree- structures. The 
links can be navigable.

 Objects can collaborate, e.g., by message 
exchange 

Objects



29

 The concept of class is considered
– Class is fundamental category in programming;

 For classes, hierarchy is important, which is 
defined by inheritance, or generalization

 A lot of information can be stored in classes, 
e.g., name, fields, methods, operations

 Important feature of a class is its code re-
usability, which results in faster and simpler 
development, easier software maintenance

Classes



30

 Inheritance allows us to design new 
classes by using a parent class and adding 
new elements to the parent class

 Class hierarchy design will be considered, 
together with adding implementation to a 
class hierarchy 

 Classes can be abstract and concrete, with 
re-definition of methods

 Example: stack implementation

Inheritance



31

 The meaning of type and type system will be 
considered:
– Dynamic type systems
– Static type systems

 A polymorphic variable refers to a different types 
at different times, and a polymorphic message 
has different methods associated with it

 Type casting (implicit and explicit) and template 
usage allow us to convert types

Type systems



32

Development methodologies - I
 Classical phases of development 

methodologies will be considered:
– Requirements
– Analysis
– Specifications
– Design
– Implementation
– Testing
– Deployment
– Maintenance and re-use



33

Development methodologies -II

 Waterfall development methodology is 
a classic methodology of software 
development

 Object-oriented methodologies:
– Role of UML and UML tool in development 

 More flexible methodologies
– Spiral
– Incremental
– Iterative
– Hybrid



34

 Requirement (functional and non-functional) is 
the important phase, which should be done prior 
any coding

 As the first recommended step, actor list and 
project glossary are created for requirement 
analysis

 Next, modeling the business context and system 
functionality (using high-level business use 
cases) is completed

 Optionally, system requirements can be modeled 
with the use case models, and UML 
communication diagrams and activity diagrams 
can be used for modeling

Requirement analysis



35

Problem analysis
 Overview of the analysis process will be 

given
 Two analysis methodologies will be 

considered:
– Static analysis
– Dynamic analysis

 Improvement of analysis can be done using 
communication diagrams and state 
machine diagrams



36

System design
 Main steps of system design and design 

priorities will be considered
 It is important to decompose a system into 

physical and logical components
 Example of complicated software/hardware 

system design with UML diagrams will be 
investigated

 Introduction to concept of UML packaging 
will be given



37

Subsystem design
 The role of subsystem design is to decide 

exactly what objects we are going to 
implement and what interfaces they should 
have

 Design of user interfaces will be discussed
 To avoid writing fresh code (“from scratch”), 

looking for existing patterns, libraries, 
frameworks is recommended

 UML examples of subsystem will be given



38

Specifications and re-usability
 There are formal and informal 

specifications. Very often customer’s 
specifications are very informal

 Important examples of Doxygen style 
commenting will be presented

 Doxygen software tool use example will be 
given

 Techniques of patterns’ re-use will be 
considered



39

Testing
 Testing as one of the final stage of software 

development can be categorized as:
– Black-box testing
– White box testing
– Modular testing
– Integral testing

 Testing terminology and testing strategies 
will be considered

 Example of test table will be given



40

UML diagrams
 You will learn several diagram types (minimum, 5 )
 Below, they are ordered by development stage



41

Summary
 This course covers important stages which 

should be done prior actual coding, and 
namely, OOA and OOD

 OOA and OOD is supported by UML tool
 This course is useful for practical project 

development in our PBL labs
 This course can be accompanied by 

learning of:
– Programming in Java
– Programming in C++ or C# 



42

Homework
 Download these slides and read this lecture 

materials again
 Download Astah UML (free student edition from 

astah.net ), if you have computer. You have to 
register via your Ritsumeikan student e-mail to 
get the key-code for Astah UML activation.

 Download self-preparation assignment and 
complete it within one week

 Check access to our class Webpage 
http://www.dh.is.ritsumei.ac.jp/uml/



43

Objects
 concept
 encapsulation
 association and aggregation
 first use of UML tool

Next class



44

 Beginning from  class “Week03”, there will be our first 
mini-test (included into assignment for Week-03)

 A test will typically consist of 1-3 problems, which you 
must solve individually.

 The problems will be from the previous lecture topics

 There will be also a mid-semester  test (Week 06)

About tests


