|
1
|
"""
|
|
2
|
@file altmain.py
|
|
3
|
@brief Projection Splitter with Overlap Blending using PyTorch.
|
|
4
|
|
|
5
|
@details
|
|
6
|
This module provides a projection image processing system designed for
|
|
7
|
multi-projector setups or panoramic displays. It takes an input image,
|
|
8
|
splits it into two halves (left and right), and applies an overlap blending
|
|
9
|
region between them to ensure seamless projection alignment.
|
|
10
|
|
|
11
|
It supports multiple blending modes (linear, quadratic, and Gaussian)
|
|
12
|
and performs GPU-accelerated computation via PyTorch for high efficiency.
|
|
13
|
"""
|
|
14
|
|
|
15
|
import cv2
|
|
16
|
import numpy as np
|
|
17
|
import math
|
|
18
|
from scipy.special import erf
|
|
19
|
import torch
|
|
20
|
import config_reader
|
|
21
|
|
|
22
|
|
|
23
|
class ProjectionSplit:
|
|
24
|
"""
|
|
25
|
@brief Handles image splitting and blending for projection alignment.
|
|
26
|
|
|
27
|
@details
|
|
28
|
The ProjectionSplit class processes both static images and individual
|
|
29
|
frames from video sources. It divides the input image into two parts
|
|
30
|
with a configurable overlap and applies smooth blending transitions
|
|
31
|
using selected mathematical models.
|
|
32
|
|
|
33
|
The blending operations are optimized with PyTorch and support the
|
|
34
|
Metal backend for GPU acceleration on macOS devices.
|
|
35
|
"""
|
|
36
|
|
|
37
|
def __init__(self):
|
|
38
|
"""@brief Initialize the ProjectionSplit object and configuration.
|
|
39
|
|
|
40
|
@details
|
|
41
|
This constructor initializes placeholders for the left, right,
|
|
42
|
and main images, and loads configuration parameters (e.g.,
|
|
43
|
blending coefficients) from the `config.ini` file via ConfigReader.
|
|
44
|
"""
|
|
45
|
self.image_left = None
|
|
46
|
self.image_right = None
|
|
47
|
self.image_main = None
|
|
48
|
self.cfg = config_reader.ConfigReader("config.ini")
|
|
49
|
|
|
50
|
def process_frame(self, image, overlap: int = 75, blend_type: str = "exponential"):
|
|
51
|
"""@brief Process a single input frame into left and right projections with overlap blending.
|
|
52
|
|
|
53
|
@details
|
|
54
|
This method divides an input image frame into two halves and applies
|
|
55
|
a blending function to the overlapping region between them. The
|
|
56
|
blending type determines the transition smoothness between projectors.
|
|
57
|
|
|
58
|
Available blend types:
|
|
59
|
- **linear**: Simple linear transition.
|
|
60
|
- **quadratic**: Smoother parabolic blending.
|
|
61
|
- **gaussian**: Natural soft transition curve based on Gaussian distribution.
|
|
62
|
|
|
63
|
The blending is executed on GPU via PyTorch for efficient computation.
|
|
64
|
|
|
65
|
@param image The input image (NumPy array) in BGR or BGRA format.
|
|
66
|
@param overlap Integer specifying the pixel width of the overlapping area. Default: 75.
|
|
67
|
@param blend_type String specifying the blending function ("linear", "quadratic", "gaussian").
|
|
68
|
@throws FileNotFoundError If the image is None or not found.
|
|
69
|
@throws ValueError If an invalid blend_type is specified.
|
|
70
|
"""
|
|
71
|
if image is None:
|
|
72
|
raise FileNotFoundError("Error: input.png not found or could not be loaded.")
|
|
73
|
self.image_main = image
|
|
74
|
|
|
75
|
# Ensure alpha channel
|
|
76
|
if image.shape[2] == 3:
|
|
77
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
|
|
78
|
|
|
79
|
height, width = image.shape[:2]
|
|
80
|
split_x = width // 2
|
|
81
|
|
|
82
|
# Define overlapping regions
|
|
83
|
left_end = split_x + overlap // 2
|
|
84
|
right_start = split_x - overlap // 2
|
|
85
|
|
|
86
|
left_img = image[:, :left_end].copy()
|
|
87
|
right_img = image[:, right_start:].copy()
|
|
88
|
|
|
89
|
# Generate normalized overlap vector
|
|
90
|
x = np.linspace(0, 1, overlap)
|
|
91
|
|
|
92
|
# Select blending function
|
|
93
|
if blend_type == "linear":
|
|
94
|
alpha_left_curve = 1 - self.cfg.get_linear_parameter() * x
|
|
95
|
alpha_right_curve = 1 - self.cfg.get_linear_parameter() + self.cfg.get_linear_parameter() * x
|
|
96
|
elif blend_type == "quadratic":
|
|
97
|
alpha_left_curve = (1 - x) ** 2
|
|
98
|
alpha_right_curve = x ** 2
|
|
99
|
elif blend_type == "gaussian":
|
|
100
|
sigma = 0.25
|
|
101
|
g = 0.5 * (1 + erf((x - 0.5) / (sigma * np.sqrt(2))))
|
|
102
|
alpha_left_curve = 1 - g
|
|
103
|
alpha_right_curve = g
|
|
104
|
else:
|
|
105
|
raise ValueError(f"Unknown blend_type '{blend_type}'")
|
|
106
|
|
|
107
|
# GPU accelerated blending using PyTorch
|
|
108
|
device = "mps" # Metal backend (for macOS)
|
|
109
|
left_img_t = torch.from_numpy(left_img).to(device, dtype=torch.float32)
|
|
110
|
right_img_t = torch.from_numpy(right_img).to(device, dtype=torch.float32)
|
|
111
|
alpha_left_t = torch.from_numpy(alpha_left_curve).to(device, dtype=torch.float32)
|
|
112
|
alpha_right_t = torch.from_numpy(alpha_right_curve).to(device, dtype=torch.float32)
|
|
113
|
|
|
114
|
# Expand alpha for broadcast along image width
|
|
115
|
alpha_left_2d = alpha_left_t.unsqueeze(0).unsqueeze(-1)
|
|
116
|
alpha_right_2d = alpha_right_t.unsqueeze(0).unsqueeze(-1)
|
|
117
|
|
|
118
|
# Apply blending on alpha channel
|
|
119
|
left_img_t[:, -overlap:, 3] *= alpha_left_2d.squeeze(-1)
|
|
120
|
right_img_t[:, :overlap, 3] *= alpha_right_2d.squeeze(-1)
|
|
121
|
|
|
122
|
# Convert back to CPU for saving
|
|
123
|
left_img = left_img_t.cpu().numpy().astype(np.uint8)
|
|
124
|
right_img = right_img_t.cpu().numpy().astype(np.uint8)
|
|
125
|
|
|
126
|
self.image_left = left_img
|
|
127
|
self.image_right = right_img
|
|
128
|
|
|
129
|
cv2.imwrite("left.png", left_img)
|
|
130
|
cv2.imwrite("right.png", right_img)
|
|
131
|
|
|
132
|
def process_images(self, overlap: int = 75, blend_type: str = "exponential"):
|
|
133
|
"""@brief Process a static image file and generate blended left/right outputs.
|
|
134
|
|
|
135
|
@details
|
|
136
|
Reads 'input.png' from the current working directory, applies
|
|
137
|
image splitting and overlap blending, and saves the processed
|
|
138
|
halves as 'left.png' and 'right.png'.
|
|
139
|
|
|
140
|
This function uses the same internal logic as process_frame()
|
|
141
|
but is intended for static image files instead of real-time frames.
|
|
142
|
|
|
143
|
@param overlap Integer pixel width of the overlapping region. Default: 75.
|
|
144
|
@param blend_type String specifying blending mode ("linear", "quadratic", "gaussian").
|
|
145
|
@throws FileNotFoundError If 'input.png' is not found.
|
|
146
|
@throws ValueError If an invalid blending type is selected.
|
|
147
|
"""
|
|
148
|
image = cv2.imread("input.png", cv2.IMREAD_UNCHANGED)
|
|
149
|
self.image_main = image
|
|
150
|
if image is None:
|
|
151
|
raise FileNotFoundError("Error: input.png not found.")
|
|
152
|
|
|
153
|
# Ensure image has alpha channel
|
|
154
|
if image.shape[2] == 3:
|
|
155
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
|
|
156
|
|
|
157
|
height, width = image.shape[:2]
|
|
158
|
split_x = width // 2
|
|
159
|
|
|
160
|
left_end = split_x + overlap // 2
|
|
161
|
right_start = split_x - overlap // 2
|
|
162
|
|
|
163
|
left_img = image[:, :left_end].copy()
|
|
164
|
right_img = image[:, right_start:].copy()
|
|
165
|
|
|
166
|
# Create blend curve
|
|
167
|
x = np.linspace(0, 1, overlap)
|
|
168
|
if blend_type == "linear":
|
|
169
|
alpha_left_curve = 1 - self.cfg.get_linear_parameter() * x
|
|
170
|
alpha_right_curve = 1 - self.cfg.get_linear_parameter() + self.cfg.get_linear_parameter() * x
|
|
171
|
elif blend_type == "quadratic":
|
|
172
|
alpha_left_curve = (1 - x) ** 2
|
|
173
|
alpha_right_curve = x ** 2
|
|
174
|
elif blend_type == "gaussian":
|
|
175
|
sigma = 0.25
|
|
176
|
g = 0.5 * (1 + erf((x - 0.5) / (sigma * np.sqrt(2))))
|
|
177
|
alpha_left_curve = 1 - g
|
|
178
|
alpha_right_curve = g
|
|
179
|
else:
|
|
180
|
raise ValueError(f"Unknown blend_type '{blend_type}'")
|
|
181
|
|
|
182
|
# GPU blending with PyTorch
|
|
183
|
device = "mps"
|
|
184
|
left_img_t = torch.from_numpy(left_img).to(device, dtype=torch.float32)
|
|
185
|
right_img_t = torch.from_numpy(right_img).to(device, dtype=torch.float32)
|
|
186
|
alpha_left_t = torch.from_numpy(alpha_left_curve).to(device, dtype=torch.float32)
|
|
187
|
alpha_right_t = torch.from_numpy(alpha_right_curve).to(device, dtype=torch.float32)
|
|
188
|
|
|
189
|
alpha_left_2d = alpha_left_t.unsqueeze(0).unsqueeze(-1)
|
|
190
|
alpha_right_2d = alpha_right_t.unsqueeze(0).unsqueeze(-1)
|
|
191
|
|
|
192
|
left_img_t[:, -overlap:, 3] *= alpha_left_2d.squeeze(-1)
|
|
193
|
right_img_t[:, :overlap, 3] *= alpha_right_2d.squeeze(-1)
|
|
194
|
|
|
195
|
left_img = left_img_t.cpu().numpy().astype(np.uint8)
|
|
196
|
right_img = right_img_t.cpu().numpy().astype(np.uint8)
|
|
197
|
|
|
198
|
self.image_left = left_img
|
|
199
|
self.image_right = right_img
|
|
200
|
|
|
201
|
cv2.imwrite("left.png", left_img)
|
|
202
|
cv2.imwrite("right.png", right_img)
|