Code » History » Version 6
Faiq Sayyidan SETIAWAN, 10/24/2024 01:23 PM
1 | 1 | Faiq Sayyidan SETIAWAN | --- |
---|---|---|---|
2 | |||
3 | 6 | Faiq Sayyidan SETIAWAN | *[[/|Home]]* | *[[Team Members]]* | *[[Project Description]]* | *[[Code]]* | *[[UML Diagrams]]* | *[[Results]]* | |
4 | 1 | Faiq Sayyidan SETIAWAN | |
5 | --- |
||
6 | 2 | Faiq Sayyidan SETIAWAN | |
7 | h1=. <pre> |
||
8 | 3 | Faiq Sayyidan SETIAWAN | Code </pre> |
9 | 4 | Faiq Sayyidan SETIAWAN | |
10 | h2. alpha_blending_v2.py: everything |
||
11 | |||
12 | <pre><code class="python"> |
||
13 | import tkinter as tk |
||
14 | |||
15 | from tkinter import filedialog, messagebox |
||
16 | |||
17 | from tkinter import ttk |
||
18 | |||
19 | import configparser |
||
20 | |||
21 | import cv2 |
||
22 | |||
23 | import numpy as np |
||
24 | |||
25 | import os |
||
26 | |||
27 | import logging |
||
28 | |||
29 | from PIL import Image, ImageTk |
||
30 | |||
31 | # Setup logging |
||
32 | |||
33 | logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
||
34 | |||
35 | # ConfigReader class definition |
||
36 | |||
37 | class ConfigReader: |
||
38 | |||
39 | def __init__(self, config_path): |
||
40 | |||
41 | self.config_parser = configparser.ConfigParser() |
||
42 | |||
43 | self.config_parser.read(config_path) |
||
44 | |||
45 | def getImageName(self): |
||
46 | |||
47 | return str(self.config_parser['DEFAULT']['image_name']) |
||
48 | |||
49 | def getProjectedImageWidth(self): |
||
50 | |||
51 | return int(self.config_parser['DEFAULT']['projected_image_width']) |
||
52 | |||
53 | def getProjectedOverlapWidth(self): |
||
54 | |||
55 | return int(self.config_parser['DEFAULT']['projected_overlap_width']) |
||
56 | |||
57 | def getGamma(self): |
||
58 | |||
59 | return float(self.config_parser['DEFAULT']['gamma']) |
||
60 | |||
61 | def getImageSide(self): |
||
62 | |||
63 | return int(self.config_parser['DEFAULT']['image_side']) |
||
64 | |||
65 | def getTransparencyFactor(self): |
||
66 | |||
67 | return float(self.config_parser['DEFAULT'].get('transparency_factor', 1.0)) |
||
68 | |||
69 | # MainDisplay class definition |
||
70 | |||
71 | class MainDisplay: |
||
72 | |||
73 | def readImage(self, image_path): |
||
74 | |||
75 | # Loads an image from the specified path with 3 channels (BGR) |
||
76 | |||
77 | image = cv2.imread(image_path, cv2.IMREAD_COLOR) |
||
78 | |||
79 | if image is None: |
||
80 | |||
81 | logging.error(f"Error loading image at {image_path}") |
||
82 | |||
83 | else: |
||
84 | |||
85 | logging.info(f"Loaded image {image_path} with shape: {image.shape}") |
||
86 | |||
87 | return image |
||
88 | |||
89 | def setImage(self, image): |
||
90 | |||
91 | # Placeholder for image processing if necessary |
||
92 | |||
93 | # Here you can modify or prepare the image before displaying |
||
94 | |||
95 | logging.info(f"Setting image with shape: {image.shape}") |
||
96 | |||
97 | return image |
||
98 | |||
99 | # MaskCreator class definition |
||
100 | |||
101 | class MaskCreator: |
||
102 | |||
103 | def __init__(self, image, transparency_factor): |
||
104 | |||
105 | self.__image = image |
||
106 | |||
107 | self.__alpha_gradient = None |
||
108 | |||
109 | self.__gamma_corrected = None |
||
110 | |||
111 | self.result_image = None |
||
112 | |||
113 | self.__mask = None |
||
114 | |||
115 | self.transparency_factor = transparency_factor |
||
116 | |||
117 | def smoothstep(self, edge0, edge1, x): |
||
118 | |||
119 | # Smoothstep function for smoother transition (non-linear gradient) |
||
120 | |||
121 | x = np.clip((x - edge0) / (edge1 - edge0), 0, 1) |
||
122 | |||
123 | return x * x * (3 - 2 * x) |
||
124 | |||
125 | def create_mask(self, image_side, mask_width, image_width): |
||
126 | |||
127 | self.__mask = self.__image.shape[1] * mask_width // image_width |
||
128 | |||
129 | gradient = np.linspace(0, 1, self.__mask) |
||
130 | |||
131 | # Apply smoothstep to create a smoother gradient |
||
132 | |||
133 | smooth_gradient = self.smoothstep(0, 1, gradient) |
||
134 | |||
135 | # Apply transparency factor to adjust the strength of the blending |
||
136 | |||
137 | smooth_gradient = smooth_gradient * self.transparency_factor |
||
138 | |||
139 | if image_side == 1: |
||
140 | |||
141 | # Gradient from transparent to opaque (middle to right) |
||
142 | |||
143 | self.__alpha_gradient = smooth_gradient |
||
144 | |||
145 | elif image_side == 0: |
||
146 | |||
147 | # Gradient from opaque to transparent (left to middle) |
||
148 | |||
149 | self.__alpha_gradient = smooth_gradient[::-1] # Reverse for the left side |
||
150 | |||
151 | def gammaCorrection(self, gamma): |
||
152 | |||
153 | # Apply gamma correction |
||
154 | |||
155 | inv_gamma = 1.0 / gamma |
||
156 | |||
157 | table = np.array([((i / 255.0) ** inv_gamma) * 255 |
||
158 | |||
159 | for i in np.arange(256)]).astype("uint8") |
||
160 | |||
161 | self.__gamma_corrected = cv2.LUT(self.__image, table) |
||
162 | |||
163 | logging.info(f"Applied gamma correction with gamma={gamma}") |
||
164 | |||
165 | # Save gamma corrected image for inspection |
||
166 | |||
167 | cv2.imwrite("gamma_corrected.png", self.__gamma_corrected) |
||
168 | |||
169 | def alpha_blending(self, image_side): |
||
170 | |||
171 | """ |
||
172 | |||
173 | Applies alpha blending on the gamma-corrected image. |
||
174 | |||
175 | Combines the gamma-corrected part of the image with a black background using the alpha gradient mask. |
||
176 | |||
177 | """ |
||
178 | |||
179 | # Initialize result_image to be the gamma-corrected image |
||
180 | |||
181 | self.result_image = self.__gamma_corrected.copy() |
||
182 | |||
183 | if image_side == 1: # Right side |
||
184 | |||
185 | # Create a region of interest (ROI) where blending will occur (right side of the image) |
||
186 | |||
187 | roi = self.result_image[:, :self.__mask].astype(np.float32) |
||
188 | |||
189 | # Create black background for blending |
||
190 | |||
191 | black_background = np.zeros_like(roi, dtype=np.float32) |
||
192 | |||
193 | # Apply the alpha mask to blend gamma-corrected image with black background |
||
194 | |||
195 | alpha = self.__alpha_gradient.reshape(1, -1, 1).astype(np.float32) |
||
196 | |||
197 | blended = (alpha * roi + (1 - alpha) * black_background) |
||
198 | |||
199 | blended = np.clip(blended, 0, 255).astype(np.uint8) |
||
200 | |||
201 | # Place the blended region back in the result image |
||
202 | |||
203 | self.result_image[:, :self.__mask] = blended |
||
204 | |||
205 | logging.info(f"Applied alpha blending on the right side with mask width {self.__mask}") |
||
206 | |||
207 | # Save blended region for debugging |
||
208 | |||
209 | cv2.imwrite("blended_right_side.png", blended) |
||
210 | |||
211 | elif image_side == 0: # Left side |
||
212 | |||
213 | # Create a region of interest (ROI) where blending will occur (left side of the image) |
||
214 | |||
215 | roi = self.result_image[:, -self.__mask:].astype(np.float32) |
||
216 | |||
217 | # Create black background for blending |
||
218 | |||
219 | black_background = np.zeros_like(roi, dtype=np.float32) |
||
220 | |||
221 | # Apply the alpha mask to blend gamma-corrected image with black background |
||
222 | |||
223 | alpha = self.__alpha_gradient.reshape(1, -1, 1).astype(np.float32) |
||
224 | |||
225 | blended = (alpha * roi + (1 - alpha) * black_background) |
||
226 | |||
227 | blended = np.clip(blended, 0, 255).astype(np.uint8) |
||
228 | |||
229 | # Place the blended region back in the result image |
||
230 | |||
231 | self.result_image[:, -self.__mask:] = blended |
||
232 | |||
233 | logging.info(f"Applied alpha blending on the left side with mask width {self.__mask}") |
||
234 | |||
235 | # Save blended region for debugging |
||
236 | |||
237 | cv2.imwrite("blended_left_side.png", blended) |
||
238 | |||
239 | def process_image(config_path, main_display): |
||
240 | |||
241 | """ |
||
242 | |||
243 | Processes an image based on the provided configuration. |
||
244 | |||
245 | Args: |
||
246 | |||
247 | config_path (str): Path to the configuration file. |
||
248 | |||
249 | main_display (MainDisplay): Instance of MainDisplay for image operations. |
||
250 | |||
251 | Returns: |
||
252 | |||
253 | tuple: Processed image and its corresponding name. |
||
254 | |||
255 | """ |
||
256 | |||
257 | # Load configuration |
||
258 | |||
259 | config_reader = ConfigReader(config_path) |
||
260 | |||
261 | # Retrieve configuration parameters |
||
262 | |||
263 | mask_width = config_reader.getProjectedOverlapWidth() |
||
264 | |||
265 | image_width = config_reader.getProjectedImageWidth() |
||
266 | |||
267 | gamma = config_reader.getGamma() |
||
268 | |||
269 | image_side = config_reader.getImageSide() |
||
270 | |||
271 | image_path = config_reader.getImageName() |
||
272 | |||
273 | transparency_factor = config_reader.getTransparencyFactor() |
||
274 | |||
275 | # Determine image side name |
||
276 | |||
277 | if image_side == 0: |
||
278 | |||
279 | image_name = 'left' |
||
280 | |||
281 | elif image_side == 1: |
||
282 | |||
283 | image_name = 'right' |
||
284 | |||
285 | else: |
||
286 | |||
287 | logging.error(f"Invalid ImageSide value in {config_path}. Use 0 for left image, 1 for right image.") |
||
288 | |||
289 | return None, None |
||
290 | |||
291 | # Load image |
||
292 | |||
293 | image = main_display.readImage(image_path) |
||
294 | |||
295 | if image is None: |
||
296 | |||
297 | logging.error(f"Image loading failed for {image_path}. Skipping...") |
||
298 | |||
299 | return None, None |
||
300 | |||
301 | # Initialize result image |
||
302 | |||
303 | result_image = main_display.setImage(image).copy() |
||
304 | |||
305 | cv2.imwrite("initial_result_image.png", result_image) # Save initial image |
||
306 | |||
307 | # Initialize MaskCreator |
||
308 | |||
309 | mask_creator = MaskCreator(image, transparency_factor) |
||
310 | |||
311 | # Apply image modifications |
||
312 | |||
313 | mask_creator.create_mask(image_side, mask_width, image_width) |
||
314 | |||
315 | mask_creator.gammaCorrection(gamma) |
||
316 | |||
317 | mask_creator.result_image = result_image |
||
318 | |||
319 | mask_creator.alpha_blending(image_side) |
||
320 | |||
321 | # Save final result for inspection |
||
322 | |||
323 | cv2.imwrite("final_result_image.png", mask_creator.result_image) |
||
324 | |||
325 | return mask_creator.result_image, image_name |
||
326 | |||
327 | def save_image(image, name): |
||
328 | |||
329 | """ |
||
330 | |||
331 | Save the processed image to the project folder. |
||
332 | |||
333 | Args: |
||
334 | |||
335 | image (np.ndarray): The image to be saved. |
||
336 | |||
337 | name (str): Name of the image (left or right). |
||
338 | |||
339 | """ |
||
340 | |||
341 | # Define the output path |
||
342 | |||
343 | output_dir = os.path.join(os.getcwd(), "processed_images") |
||
344 | |||
345 | os.makedirs(output_dir, exist_ok=True) |
||
346 | |||
347 | # Create the output file name |
||
348 | |||
349 | output_path = os.path.join(output_dir, f"processed_image_{name}.png") |
||
350 | |||
351 | # Save the image |
||
352 | |||
353 | cv2.imwrite(output_path, image) |
||
354 | |||
355 | logging.info(f"Saved processed image: {output_path}") |
||
356 | |||
357 | # GUI Application class definition |
||
358 | |||
359 | class ImageProcessingApp: |
||
360 | |||
361 | def __init__(self, root): |
||
362 | |||
363 | self.root = root |
||
364 | |||
365 | self.root.title("Image Processing Application") |
||
366 | |||
367 | # UI elements |
||
368 | |||
369 | self.config_left = "" |
||
370 | |||
371 | self.config_right = "" |
||
372 | |||
373 | self.left_image_label = tk.Label(root, text="Left Image: None", anchor="w") |
||
374 | |||
375 | self.left_image_label.pack(fill="x", padx=5, pady=5) |
||
376 | |||
377 | self.right_image_label = tk.Label(root, text="Right Image: None", anchor="w") |
||
378 | |||
379 | self.right_image_label.pack(fill="x", padx=5, pady=5) |
||
380 | |||
381 | self.select_left_button = tk.Button(root, text="Select Left Config", command=self.select_left_config) |
||
382 | |||
383 | self.select_left_button.pack(pady=5) |
||
384 | |||
385 | self.select_right_button = tk.Button(root, text="Select Right Config", command=self.select_right_config) |
||
386 | |||
387 | self.select_right_button.pack(pady=5) |
||
388 | |||
389 | self.process_button = tk.Button(root, text="Process Images", command=self.process_images, state="disabled") |
||
390 | |||
391 | self.process_button.pack(pady=10) |
||
392 | |||
393 | self.progress_bar = ttk.Progressbar(root, orient="horizontal", length=300, mode="determinate") |
||
394 | |||
395 | self.progress_bar.pack(pady=10) |
||
396 | |||
397 | self.image_display = tk.Label(root) |
||
398 | |||
399 | self.image_display.pack() |
||
400 | |||
401 | def select_left_config(self): |
||
402 | |||
403 | self.config_left = filedialog.askopenfilename(title="Select Left Config File", |
||
404 | |||
405 | filetypes=[("INI files", "*.ini")]) |
||
406 | |||
407 | if self.config_left: |
||
408 | |||
409 | self.left_image_label.config(text=f"Left Image Config: {os.path.basename(self.config_left)}") |
||
410 | |||
411 | self.enable_process_button() |
||
412 | |||
413 | def select_right_config(self): |
||
414 | |||
415 | self.config_right = filedialog.askopenfilename(title="Select Right Config File", |
||
416 | |||
417 | filetypes=[("INI files", "*.ini")]) |
||
418 | |||
419 | if self.config_right: |
||
420 | |||
421 | self.right_image_label.config(text=f"Right Image Config: {os.path.basename(self.config_right)}") |
||
422 | |||
423 | self.enable_process_button() |
||
424 | |||
425 | def enable_process_button(self): |
||
426 | |||
427 | if self.config_left and self.config_right: |
||
428 | |||
429 | self.process_button.config(state="normal") |
||
430 | |||
431 | def process_images(self): |
||
432 | |||
433 | config_files = [self.config_left, self.config_right] |
||
434 | |||
435 | processed_images = {} |
||
436 | |||
437 | self.progress_bar["value"] = 0 |
||
438 | |||
439 | self.root.update_idletasks() |
||
440 | |||
441 | for i, config_file in enumerate(config_files): |
||
442 | |||
443 | image, name = process_image(config_file, MainDisplay()) |
||
444 | |||
445 | if image is not None and name is not None: |
||
446 | |||
447 | processed_images[name] = image |
||
448 | |||
449 | self.progress_bar["value"] += 50 |
||
450 | |||
451 | self.root.update_idletasks() |
||
452 | |||
453 | for name, img in processed_images.items(): |
||
454 | |||
455 | save_image(img, name) |
||
456 | |||
457 | self.display_image(processed_images) |
||
458 | |||
459 | self.progress_bar["value"] = 100 |
||
460 | |||
461 | self.root.update_idletasks() |
||
462 | |||
463 | messagebox.showinfo("Processing Complete", "Images processed and saved successfully.") |
||
464 | |||
465 | def display_image(self, processed_images): |
||
466 | |||
467 | for name, img in processed_images.items(): |
||
468 | |||
469 | img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
||
470 | |||
471 | pil_img = Image.fromarray(img_rgb) |
||
472 | |||
473 | img_tk = ImageTk.PhotoImage(pil_img) |
||
474 | |||
475 | self.image_display.config(image=img_tk) |
||
476 | |||
477 | self.image_display.image = img_tk |
||
478 | |||
479 | def main(): |
||
480 | |||
481 | root = tk.Tk() |
||
482 | |||
483 | app = ImageProcessingApp(root) |
||
484 | |||
485 | root.mainloop() |
||
486 | |||
487 | if __name__ == "__main__": |
||
488 | |||
489 | main() |
||
490 | |||
491 | </code></pre> |